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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Aerospace structures and spacecraft are a complex assemblage of structural

components that are subjected to a variety of complex, cyclic, and transient loading

conditions. Significant modeling uncertainties are present in these structures, in

addition to the inherent randomness of material properties and loads. To properly

account for these uncertainties in evaluating and assessing the reliability of these

components and structures, probabilistic structural mechanics (PSM) procedures
must be used.

Significant advances have taken place in PSM over the last two decades.

Much of this research has focused on basic theory development and the

development of approximate analytic solution methods in random vibrations and

structural reliability. Practical application of PSM methods has been hampered by

their computationally intense nature. Solution of PSM problems require repeated

analyses of structures that are often large, and exhibit nonlinear and/or dynamic
response behavior. A single deterministic solution of such structures can strain

available computational resources. These methods, however, are all inherently

parallel and ideally suited to implementation on parallel processing computers.

While there has been research into parallel implementation of Monte-Carlo

methods in physics and nuclear engineering (see Table 1-1), no research has been

conducted in PSM. A need exists to systematically study implementation of these

methods on parallel architectures and identify the optimal hardware and software

specifications. New hardware architectures and innovative control software and

solution methodologies are needed to make solution of large scale PSM problems

practical. The next decade of research in computational PSM and the promise of

parallel computing may open up a whole new class of nonlinear finite element and

dynamics problems to probabilistic structural analysis.

1.2 OBJECTIVES AND SCOPE

The ultimate goal of this research program is to develop an integrated system

that can achieve significant reductions in computational times for large scale PSM

problems. This system will exploit the inherently parallel nature of PSM problems

by incorporating new and innovative parallel hardware architectures (based on

current technologies), controlling software, and solution strategies.

Achieving large scale parallelism and significant reductions in computer time

will require overcoming limitations of current parallel architectures and developing

software strategies that can keep large numbers of processors busy while minimizing

memory requirements and inter-processor communication. The purpose of this
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Table 1-1. Examples of Recent Research in Implementation of Monte Carlo

Methods in Parallel Computing Environments

Authors

Brown,Martin

Chauvet

Delves

Bhavsar, Isaac

Bums, Pryor

Glendinning, Hey

Hey, Ward

Martin, Brown

Martin, Wan,

Abdel-Rahman,

Mudge

Miura

Moatti, Goldberg
Memmi

VanRensburg

Wansleben

Yokozawa, Oku,

Kondo, Togo

Traynor, Anderson

Mori, Tsuda

Malaguti

Vohwinkel

Date

1984

1985

1985

1987

1987

1987

1987

1987

1987

1987

1987

1987

1987

1987

1988

1988

1988

1988

Application

Nuclear Engr.

Nuclear Engr.

Physics

General

Heat Transfer

Physics

Nuclear Engr.
General

Nuclear Engr.

Nuclear Engr.

Physics

Physics

Physics

Physics

Nuclear Engr.

Chemistry

Physics

Physics

General

Country

USA

France

UK

Canada

USA

UK

UK

USA

USA

Japan

Israel

UK

USA

Japan

USA

Japan

Italy

USA

Computational

Emphasis

Vectorization

Vectorization

Concurrency

Concurrency

Concurrency

Vectorization

Concurrency

Concurrency

Vectorization

Concurrency

Vectorization

Concurrency,

Concurrency

Vectorization

Concurrency
Vectorization

Concurrency

Vectorization

Vectorization

Vectorization

Relevant

Hardware

Cyber 205

Cray

Cyber 205

DAP

General

Cyber 205

INMOS Multi-

Transputer

INMOS Multi-

Transputer

Cray

Cyber 205

IBM 3090/400
NCUBE

Hypercube

Amdahl 1200

Network of

Microcomputers

General

Cyber 205

HITAC $810

General

HITAC $810

Cray

Cyber 205
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Phase I research effort is to take the first steps toward parallel implementation.

Toward this end we have focused herein on the basic issues of parallel

implementation and have aimed to identify the special software and hardware

research and development needs for large scale parallel PSM implementation.

The specific objectives of this Phase I study are:

. Assess the current state-of-the-art of parallel processing and the

adequacy of currently available technologies, architectures, and

software for parallel implementation of PSM.

, Identify the sources and multiple levels of parallelism in PSM

computations that can be exploited on parallel processing computers.

, Implement a PSM code on a parallel computer and execute

fundamental example problems to identify specific implementation
issues.

, Formulate recommendations and generic specifications for

development of the parallel PSM hardware and software system.

The report is organized around the basic tasks conducted to achieve these

objectives. Chapter 2 contains an in-depth review of current parallel architectures

and also discusses emerging technologies that are expected to impact parallel PSM.

This chapter provides the basis for development of architectural concepts for the

parallel PSM system. In Chapter 3 we review the sources of parallelism in PSM

computations. Parallelism in both the probabilistic and structural mechanics

computations are covered. Chapter 4 presents an overview of MCPAP, a parallel

PSM code developed and implemented under this effort. Several example

applications are also presented, including two stochastic finite element problems.

Finally, in Chapter 5 we present the conclusions of our work and present generic

hardware and software specifications for the integrated parallel PSM system.

An appendix is also provided that describes a numerical technique for solving

systems of equations, that was developed and implemented in MCPAP. This

method, the Stochastic Pre-Conditioned Conjugate Gradient method, shows

excellent potential for dramatic reductions in storage requirements and

computational effort in PSM problems. Both of these are critical issues for

successful large scale parallel PSM implementation.
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CHAPTER 2

REVIEW OF PARALLEL PROCESSING

2.1. HISTORY OF PARALLEL PROCESSING

Parallel processing seeks to improve the speed with which a computational

task can be done by breaking it into subtasks and executing as many as possible of

these subtasks simultaneously. This idea has a long history in computer science, but

has received greater attention recently with the advent of affordable parallel

computers. This section presents a brief summary of the development of the

principal ideas in parallel processing (for a more detailed discussion the reader is

referred to Hockney and Jesshope [1981]). Recent developments in parallel

processing have led to the current situation where parallel processing can be

considered to be a useful tool for many realistic applications, in particular Monte
Carlo methods.

The principal means to instill parallelism into a computer architecture are:

Pipelining (instructions as well as arithmetic operations) and

Concurrency

Pipelining refers to the processing of data in an assembly line fashion, the concept

now widely employed in vector processing computers described later. Concurrency

refers to the simultaneous operation of multiple independent processors. Both

concepts are of importance in parallel implementation of probabilistic structural

mechanics problems.

Each of these approaches has been utilized for a number of years (decades in

some cases). The earliest reference to parallel processing from the standpoint of

actual computers is by Menabrea [1842], who observed that Charles Babbage's

analytical engine could be used to great advantage if it were designed to perform

several calculations simultaneously, thus reducing the time spent to perform the

entire calculation. In addition, Babbage recognized the need to utilize "bit-parallel"
arithmetic in his difference machine since serial arithmetic would have been too

slow. Thus the advantages of parallel processing were identified over a century

before technology had progressed to the point where it could be implemented into
real hardware.

Over 100 years later, desk calculators in the 1940's exhibited some parallelism,

due to the use of bit-parallel arithmetic to process approximately 12 decimal digits at

the same time. Multiple functional units were introduced into computer designs

quite early in the 1950's, with machines such as the IBM 704, which was modified in

the latter part of that decade to include parallel I/O, and renamed the IBM 709.
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Independent processorswere apparently first suggestedby Holland [1959],who
described an assembly of processors each obeying its own instruction stream. This
reference appears to be the first mention of the multiple instruction stream,
multiple data stream (MIMD) classof concurrent processors, which will be discussed
in more detail in a following section.

Beginning with the CDC 6600 and continuing with the CDC 7600 and IBM
"Stretch" computers, functional parallelism and instruction pipelining were
essential characteristics of high performance computers in the 1960's and early
1970's. Memory interleaving was also being introduced at this time, which can be
described as accessingmemory in parallel (perhaps memory "pipelining" might be a
better description). Pipelining of the functional units was also incorporated into
these machines, hence the first implementation of "vector processing" into
production computers began with the CDC 6600-7600series. However, these were
still basically scalar units, and did not have features explicitly incorporated to take
advantage of vector processing on a large scale. This was remedied by Seymour Cray
with the introduction of the Cray-1 in 1976 at Los Alamos. Also, the CDC Star 100
and the Texas Instruments TIASC were both pipelined vector computers with
earlier origins than the Cray-1. Neither of these machines, however, was a
commercial success, due to relatively slow scalar units which extracted a large
performance penalty, as will be noted in the section on efficiency below. The Cray-1
had an extremely fast scalar processor and this coupled with its vector processing
ability made it an immediate successfor large scale computation.

The notion of array processors was first mentioned in the context of a report
for the "Solomon" concept [Slotnick, et al., 1962], which was the conceptual seed for

the class of computers known as single instruction stream, multiple data stream

(SIMD), which is discussed below. The first examples to be built were the Illiac-IV,

Burroughs PEPE, Goodyear STAR.AN (and later the MPP), and ICL DAP computers.

Similar but more specialized hardware known as attached array processors were

introduced by Floating Point Systems in the late 1970's with their FPS-120 series.

These were attached arithmetic processors under the control of the host processor

and were not technically general processing elements, but the functional

characteristics of these machines are similar to a SIMD processor.

The decade of the 1980's has seen remarkable increases in computer

performance, primarily due to advances in architecture rather than raw hardware

gains. This will be discussed in more detail in the following sections on vector and

concurrent processing.

2.2. CLASSIFICATION OF COMPUTER ARCHITECTURES

There have been several attempts to classify computer architectures, or create

a taxonomy for them, but the field is sufficiently dynamic that new architectures

which defy existing classifications continue to be created. In the general scheme of

Flynn [1966], computers are classified as follows:
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• SISD - single instruction stream, single data stream

• SIMD - single instruction stream, multiple data stream

• MISD - multipl e instruction stream, single data stream

.. MIMD - multiple instruction stream, multiple data stream

This scheme has made it into the general lexicon of computer science, however,
difficulties arise since conceptually different architectures may fall into the same
category and new machines may actually represent hybrids of more than one
category. Also, the scheme does not make the important distinction, for concurrent
processing computers, between shared memory and distributed memory.

For purposes of the discussions that follow, we will use Flynn's scheme in
conjunction with memory architecture to assist in the descriptions. Our interest
here is to examine existing architectures in order to identify those architectural
characteristics that will be best suited for PSM problems. We will first examine
some implementation and performance aspectsof vector processing and concurrent
processing machines. This will be followed by a survey of current computer
architectures.

2.3. VECTOR PROCESSING

2.3.1 Description

The utilization of vector architectures in modern day supercomputers is well-

established, beginning with the Cray-1 in 1977 and continuing into the foreseeable

future with the Cray products as well as the IBM 3090, ETA-10, and various Japanese

products, including Hitachi, NEC, and Fujitsu. The basis idea of a vector processor

is that it is based on an assembly line concept -- the basic functional units (e.g., add,

multiply, divide) are segmented into many smaller units, each of which performs a

very simple task. Since each task is simple, it can be done very fast, hence the clock

speed can be increased to allow data to stream through the segmented unit faster

than for a stand alone functional unit. This is a direct analog of Henry Ford's

assembly line, with data streaming through the "factory" (the segmented functional

unit), having many simple things done to it, and then exiting the assembly line at a

rate which is constrained by the slowest internal function. It takes some time for a

single datum to make it through the unit, but once it does, it is followed by

successive data at a very fast rate. This is known as pipelining, and the idea is to

amortize the time it takes to traverse the pipeline (startup time) by processing many

data following the first data at a very fast rate (streaming rate). In general, it takes

longer for one data to traverse the pipeline for a segmented unit (or vector unit)

than for a conventional functional unit (scalar unit), and the performance depends

on having a reasonably long vector of data to be processed. Depending on the
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specific architecture, the number of elements in the vector to break even, that is the

average processing speed per data element for a vector of data versus the speed for a

scalar unit to process one data, may be very large. For example, for the Cray-1, the

break even vector length is in the range of 7 to 10, while for the CDC Cyber 205, it is

in the range of 500-1000. These differences are very important when developing

algorithms for execution on these processors.

2.3.2 Impact on Performance

Figure 2-1 is a plot of computer performance measured in millions of floating

point operations per second (MFLOPS) as a function of time. This figure clearly

indicates that this improvement in computer performance has been due not only to

advances in hardware but also to innovations in architecture, that is, how the

computer is designed and organized to carry out its computational tasks. This is

seen by noting the difference in the two speeds (reflecting scalar and vector

performance) plotted after the CDC 7600 in 1969. The scalar speed corresponds to the

speed of the conventional (scalar) CPU, whereas the vector speed is indicative of the

speed attained by taking advantage of the principal innovation for large-scale

computation in the 1970's and 1980's -- vector (pipelined) architectures.

1000

100

10

7' .1

.01

.001

CDC Cyber 205

Cray 1/_ '''°'°--°_

Cray YMP

7600/
" Cray XMP

IBM 7090_/-CD C 6600

-- Scalar

_ _ Vector
.1" Univac 1

.0001 , . , . , ,

1950 1960 1970 1980 1990

Year

Sources -

• Univac 1 and IBM 7090 - [Hockney and Jesshope, 1981]
• CDC 6600,7600 and vector data for Cray X-MP and CDC Cyber-205 - [Dongarra,

19861

• Scalar data for Cray X-MP (8.5 ns and 9.5 ns) and CDC Cyber-205 - [Bucher and
Simmons, 1985]

• Data for Cray Y-MP scaled (xl.3) from Cray X-MP

Figure 2-1. Computer Performance Versus Time
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It is instructive to note that after 1970 nearly all of the increase in
performance can be attributed to the vector processing capabilities of the various
machines. The data in Figure 2-1 represent actual published timing results rather

than vendor advertised peak rates, which are generally not a reliable measure of

performance in realistic scientific computations. It should be noted that even this

published data must be treated with caution, especially for vector calculations,

because it has been obtained from relatively simple kernels and may not be

representative of performance in practical applications.

2.3.3 Efficiency of Vector Processing

The task of developing or adapting an algorithm for a vector CPU is known as

vectorization, and is essential for realizing the full potential performance of a vector

CPU. If the algorithm is not vectorized, then the vector CPUs will not be utilized

and there is a good chance that the overall performance will actually be worse. The

effort required in modifying a scalar algorithm to run efficiently on a vector

machine can be quite substantial. On the other hand, there has been substantial

progress in developing optimizing compilers for vector processors in the 12 years

since the Cray-1 was introduced. Today, for most intensive computational

applications in science and engineering, the vectorized algorithms are well-

understood and the major impediment is the implementation, or retrofitting, of old

production codes originally developed for scalar processors, onto vector processors.

Here the drawbacks of not following the software technology curve (upward

compatible for conventional architectures) are apparent - only a fraction of the

performance of a Cray (or other vector processor) can be obtained if the code is not
vectorized.

The efficiency of vector processing is easily seen by a simple analysis.

Consider a computer with two processing modes -- a "fast" mode and a "slow"

mode. Let us define k as the ratio of the fast processing speed to the slow processing

speed,

k = v-last
Vslow (2-1)

where for example k = 10 is typical of a Cray or k = 3 for the IBM 3090. Now define

W as the total workload to be performed on the computer, a to be the fraction of the

workload that is performed with the "slow" mode, and S to be the overall speedup,

S

CPU time for slow mode only

CPU time (both fast and slow modes) (2-2)

or,
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S = W/vslow
a WlVslow + (1 - a) WlVfast (2-3)

Cancelling terms yields the following expression for the speedup, sometimes known

as Amdahl's Law [Amdahl, 1967] •

S= 1

a + (1 - a)/k (2-4)

It is illuminating to note that if the speed ratio, k, is infinite and only 50% of

the workload is done in the "fast" mode, then the speedup is only two, reflecting the

fact that half of the workload is still being done with the slow mode. For a vector

processor, a can be viewed as the scalar fraction (and 1-_x the vectorization fraction)

of the workload that is done on the vector processor. This simple expression can

also be used for a concurrent processor, where one would normally use k = N, the

number of processors, and a would represent the fraction of the workload that could

be done on only one processor (and a would then be the serial fraction). Figure 2-2

plots the speedup versus vectorization fraction for k=10, typical of the Cray.

Although plots for other values of k are not shown, suffice to say that the curves are

not sensitive to k until vectorization fractions greater than 90% are reached, which

are difficult to attain in practice.

12

_D

O3

10

8

6

4

2

0

0.0

Speedup for k = 10

[]

[]

[]

[]

[]

[]

[]

[] [] [] [] []

"WlVWl l I''1

0.2 0.4 0.6 0.8 1.0

Vectorization Fraction (1 -

Figure 2-2. Speedup versus Vectorization Fraction for a = 10

As an illustration, consider a code that is approximately 20% vectorized by the

compiler. This yields a speedup of only 20%. For 50% vectorization, experience has

shown that minor restructuring by a programmer will be needed, and the speedup

of the calculation is still less than a factor of 2. To approach the 80% level will
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require the attention of the methods developer, and may require substantial changes

to the overall algorithm. As can be seen, the asymptotic speedup of ten (typical for a

Cray) is not even approached until 90% vectorization. Unfortunately, it appears that

this "law" has been ignored by more than one vendor in recent years.

In conclusion, it seems apparent that vector processors are well-understood

and modern compilers do arelatively good job of extracting vectorization from a

typical code. However, to obtain optimum performance, it is still necessary to

structure the algorithm to take advantage of the vector architecture. For many

engineering applications, this has been done, at least in principle. One reason for

this state of affairs is that a vector processor is still a yon Neumann architecture, in

that computations are done serially. This avoids concurrent processing, which is, in

general, recognized to be a much more difficult challenge to algorithm designers

and programmers than vector processing. Fortunately, as we will demonstrate later,

probabilistic structural mechanics algorithms are inherently parallel, and we will be

able to take advantage of this.

2.4. CONCURRENT PROCESSING

2.4.1 Description

We will distinguish concurrent processors by being either distributed-

memory or shared-memory. Distributed-memory parallel processors are typically

regular arrays of large numbers of processors each with their own local memory.

These processors are interconnected by communication links that can be used for

inter-processor communication. Two processors can communicate by passing

messages along a path of links that has the processors as end points (the messages

may pass through intervening processors). Distributed-memory machines are also

referred to as "message passing" or "loosely coupled" architectures. Examples of

array topologies that have been proposed are meshes, pyramids, toroids, and

hypercubes. Shared-memory parallel processors typically have fewer processors

than distributed-memory machines (although there are exceptions of course, such as

the RP3, the Butterfly, and the Ultracomputer, which are described in later sections),

and these processors, as the name suggests, communicate through a shared memory

rather than over links. They are also referred to as "tightly coupled" architectures.

In the following we will use the memory-based classification scheme in conjunction

with the MIMD and SIMD terms of Flynn, as discussed earlier.

The distinction of shared vs. distributed arises naturally when we consider

programming models. The shared-memory architecture can support interprocessor

communication equally well by shared variables or by message passing. The

distributed-memory architecture can only support message passing with reasonable

efficiency, because the time to transfer a message is several orders of magnitude

slower than memory access to a shared variable. For example, interprocessor

communication times in current distributed memory processors are measured in

milli-seconds versus microseconds for typical memory access times in a shared
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memory processor. Furthermore, the lack of shared memory frequently means that

program code cannot be shared and must therefore be replicated on each processor

(as well as the operating system). On the other hand, a shared memory may be a

potential source of congestion, limiting the practical number of processors.

2.4.2 Impact on Performance

There is now a consensus of opinion that concurrent processing will be

essential if computing speeds are to continue to increase. One of the strongest

arguments for this point of view is the "speed-of-light" principle. This states that

the speed of light limits the rate at which information can be transmitted and, by

implication, the rate at which a single processor can perform computations. For

example, Denning [1986] estimates that the speed of light limitation will prevent a

single sequential processor from exceeding 1 GFLOPS ( 1 billion floating point

operations per second). Such fundamental limitations coupled with the

improvements that have occurred in hardware -- dramatic increases in levels of

integration and equally dramatic reductions in cost -- have finally made concurrent

processing appear to be a practical method of achieving improved rates of

computation. Evidence of this is the large number of commercial systems that have

appeared in recent years, many of which are relatively inexpensive. This trend is

continuing, and it is not an exaggeration to describe this as a veritable revolution in

computer design and manufacturing. To substantiate these claims, Figure 2-3 is a

plot of cycle time over the past several decades, indicating that the speed is leveling

off, consistent with the levelling off in performance for a single CPU indicated in

Figure 2-1.
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Figure 2-3. Trend in Cycle Time

To illustrate the effect of concurrent processing on computer performance,

Figure 2-4 is a plot of the potential performance gains with parallelization for
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vector/concurrent supercomputers and two MIMD computers, the Meiko 610 and
the NCUBE/ten. The Meiko 610 has up to 240 Transputers and the NCUBE/ten is a
hypercube parallel processor with 1024processors. (Thesemachines are described in
more detail in a later section.) Clearly, concurrent processing offers the promise of

dramatic increases in overall performance, but so far this promise has only been

realized for a few applications, and Monte Carlo simulation is one of the successful

applications areas.
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Figure 2-4. Computer Performance Versus Time

2.4.3 Challenge of Concurrent Processing

The basic difficulty with concurrent processing is dealing with multiple

processors all working simultaneously on a single problem. This is much more of a

challenge to algorithm developers than vector processing, undoubtedly due to the

fact that vector processors are basically serial processors. With concurrent

processors, the programmer must be concerned with keeping the processors busy,

since an idle processor represents an inefficiency that will detract from the overall

performance. In addition to keeping them busy, the processors may need to

communicate data, and there may be an order that must be imposed on this

communication. For example, processor A may need to use the results of processors

B and C to continue the calculation, and processors B and C might be constrained to

work on consistent data (such as from the same time step). Thus, there may be a

serious data verification and communication problem to ensure that processors are
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communicating correctly and using the correct data. For PSM problems, which are

inherently parallel, many of these problems can easily be minimized.

2.4.4 Efficiency of Concurrent Processing

The reason for concurrent processing is increased performance and we

therefore need some measure of efficiency in order to gauge the relative worth of

alternative concurrent processors and different algorithms. The basic speedup

equation for vectorization can be used for concurrency with a change in the

definition of k, which was defined for a vector processor as:

k =
Vslow (2-5)

Noting that a concurrent computer with N processors should be N times faster than

one with a single processor, gives Vfast = N • Vslow, which leads immediately to k

= N. Using the speedup equation for vectorization speedup to define the

concurrency speedup, S, gives:

S

wallclock time for single CPU

wallclock time for N CPUs (2-6)

Here wallclock times are being used rather than CPU times and the assumption is

made that the computer is dedicated to the job being analyzed. That is, only the job

under examination is being executed on either the single processor or the multiple

processors. Therefore, the wallclock time for the job to be executed on a single

processor will essentially be the same as the CPU time. Using k- N, gives the

following expression for the theoretical speedup S N for N processors:

SN- 1
a + (1 - a)/N (2-7)

where now a is the serial fraction -- the fraction of the workload that can only be

done on one processor at a time.

The theoretical efficiency e of a concurrent algorithm is defined as the ratio of

the theoretical speedup SN to the number of processors N,

c- SN
N (2-8)

This definition is a maximum, theoretical measure and does not take into account

other effects that may result in a decreased efficiency, such as:
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synchronization overhead -- extra time required to properly
synchronize concurrent tasks

task overhead -- extra time required to complete task because it is
executed on a concurrent processor

communications overhead -- extra time required due to need to
communicate between parallel tasks

idling overhead - perceived loss of efficiency due to processor idle time
during concurrent tasks

Given an observed speedup SN,ob s with N processors, the effective efficiency of the

algorithm is defined as :

SN,obs

eqf- SN (2-9)

which is a measure of the degree to which the concurrent portion of the algorithm

was effectively implemented on the concurrent processor. The extent to which Gh' <

1 measures the effects of overhead, such as synchronization or task overhead (or

poor coding). One must be careful with these definitions of efficiency because it is

possible for a serial algorithm to yield an effective efficiency of nearly 100% as long

as the parallel portion of the workload is successfully implemented on the parallel

processor. Both definitions are found in the literature, and one must be careful to

determine which definition is being utilized. A generalization to explicitly include
overhead is discussed below.

2.4.5. Effect of Overhead

The simplest model is one that incorporates one overhead factor, which

might be called a concurrency overhead, which accounts for all degradations in

performance due to the need to multitask the work across several processors. This

overhead may be due to the operating system, synchronization of tasks, or

communications overhead. Defining W as the total workload to be carried out, flW

as the additional work done to carry out multitasking, v as the speed of a single

processor (workload units per unit time), then the time necessary to finish workload
W in unitasked mode is

TI=W_W_v (2-10)

and the time to finish W, allowing multitasking with N processors, is
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(1-a) W + NEW aW
"ON= +

Nv v (2-11)

where a is the serial fraction. The speedup for N processors is thus given by

SN-
_N

1 1

}q- +a (2-12)

which indicates that the fractional overhead /J is additive to the serial fraction a.

Thus, // is tantamount to an additional serial workload, except in this case all

processors are busy doing the same thing (the overhead) rather than waiting for one

to finish the serial work. This overhead would be negligible for "dusty deck"

applications codes where the serial fraction might be expected to be significantly

greater than the multitasking overhead. However, in an inherently parallel

application such as Monte-Carlo, where the serial fraction a can be arbitrarily

reduced by simply increasing the number of histories, this overhead can be

significant. This was observed in early studies with the IBM 3090/600, where the

overhead to implement multitasking was found to be 1.8% and this dominated the

performance of the Monte-Carlo simulation which had a measured serial fractio_ of

only .03% [Denning, 1986]. For example, Table 2-1 illustrates the speedup versus

number of CPUs, assuming no serial fraction for the parallel code and a

multitasking overhead of 1.8%.

Table 2-1. Maximum Speedup from Multitasking vs. Number of CPUs

(a = 0 and ]/= .018)

# CPUs

1

2

3

4

5

6

7

8

12

16

Maximum

Speedup
.98

1.93

2.85

3.73

4.59

5.42

6.22

6.99

9.87

12.42

.O2

.07

.15

.27

.41

.58

.78

1.01

2.13

3.58

The impact of this "small" overhead is evident -- even for a perfectly parallel

application (0_=0), the overhead to implement multitasking will result in a

substantial degradation of performance for a large number of processors. For

example, if 16 processors are to be utilized, this results in a loss of 3.6 CPUs, hardly a
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negligible loss in total system performance. More sophisticated models to include

the effects of overhead have been proposed by Worlton [1987] and discussed by
Johnson [1989] and Gustavson, et al. [1988]. The effects of overhead on the

performance of parallel probabilistic structural mechanics codes is investigated
further in Chapter 4.

2.5. A SURVEY OF CURRENT COMPUTER ARCHITECTURES

This section contains a survey of computer architectures currently available

from commercial vendors. We first discuss current parallel architectures and then

summarize some other relevant technologies. The discussion of parallel

architectures is organized by memory hierarchy, that is, shared vs. distributed

memory architectures. Simply stated, shared memory machines are composed of

multiple processors that are all connected to a central (global) shared memory;

whereas in a distributed memory machine, each processor has its own local

memory. A shared memory is a potential source of congestion that, in practice,

limits the number of processors in shared-memory architectures. There are a

number of possible solutions including the multiple stage interconnection networks
(multistage-ICNs) discussed in the next section. However, none of these solutions

has been explored beyond the prototype stage. In contrast, distributed-memory

machines are already available with large numbers of processors. The potential

drawback here is communication among the processors, and the amount of

memory available to each processor.

2.5.1 Distributed-Memory Machines

To emphasize the number of processors, these systems are often referred to as

massively-parallel processors. Current commercial examples of distributed-memory

machines are the Intel iPSC-2, the NCUBE-2 (8192 processors), and the Connection

Machine CM-2 (65,536 processors) made by Thinking Machines, Inc. The numbers

in parentheses are the largest configurations possible. All of these machines are

interconnected in a hypercube topology and, with the exception of the Connection

Machine, their processors are general purpose computers that can operate

independently (in MIMD mode). The processors of the Connection Machine

operate in lockstep (SIMD mode) with each processor obeying the same instruction.

Its processors are much smaller than those in the other machines -- they are

designed to operate on one data bit at a time rather than 16 or 32 bits at a time.

There have been numerous proposals for interconnecting large numbers of

processors together that pre-date the commercial machines mentioned above.

Examples include 2-dimensional meshes, pyramids, and numerous ICN-based

machines (see the next section). A number of experimental machines have been or

are being built to test out these proposals. Some notable examples are the Illiac-IV

[Barnes, et al., 1968] (mesh connected SIMD), the Goodyear Massively Parallel

Processor [Potter, 1985] (16,536 processors, mesh connected SIMD), the pyramid

machines of Tanimoto [Tanimoto, 1983], and the Cosmic Cube [Seitz, 1985], a
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forerunner of the hypercubes mentioned above. Given the variety of proposals it is

interesting to note that the overwhelming majority of first generation commercial

distributed-memory MIMD parallel machines have been hypercube connected.

There are a number of good reasons for this, but before discussing them we will

clarify what is meant by a hypercube multiprocessor.

A hypercube is a generalization of the (3-dimensional) cube to spaces with

higher dimension (hyperspaces). Just as a 3-dimensional cube has 23 corners
(vertices), so an n-dimensional cube has 2 n corners. Similarly, each corner of a 3-

cube has 3 edges connected to it, and each corner of an n-cube has n edges connected

to it. Hypercube multiprocessors take this simple geometry and use it to define the

interconnection pattern among the processors: processors are placed at the vertices

of the cube and are connected by links along the edges. For the sake of consistency,

lower dimensional cubes (squares, lines, and points) are also regarded as hypercubes

(strictly speaking they are hypocubes). Thus the conventional uniprocessor is a O-

cube. In general, an (n+l)-dimensional cube can be constructed by replicating an n-

cube and then connecting each vertex in the original cube with its corresponding

vertex in the replicated cube (see Fig. 2-5).

There are several attractive features of the hypercube geometry. First, the

geometry is "isotropic" in the sense that it appears the same from each processor.

There are no edges or borders where processors may need to be treated as special

cases. This isotropic property can even be extended to include I/O if, as is the case

with the NCUBE machines, each processor has a separate I/O channel. Second, the

geometry provides a manageable trade-off between two extremes. At one extreme a

completely connected geometry to reduce communications time is desirable.

Unfortunately, this requires that a multiprocessor with N processors would need

N(N 1)/2 communication links to interconnect the processors and that each

processor would be connected to N-1 links. For a system with 1024 processors, over
a half-million links would be needed and each processor would have to manage

1023 links. Even if the links were simple bit-serial channels the system would be

dominated by the interconnection network and by the power required to run it. At

the other extreme a small number of links between processors is desirable to keep

the system cost within reason. The simplest is a ring -- each processor has only two

links to deal with. Unfortunately, the communication time grows linearly with N

and in the case of a system with 1024 processors some messages must travel 512

links before reaching their destination. The hypercube strikes a balance between the

high-cost/high-connectivity of a completely connected geometry and the low-

cost/low-connectivity of a ring geometry. It guarantees that any two processors are

no more than n links (n = hypercube dimension, N = 2 n) apart, and that each

processor is connected to only n links. For a system with 1024 processors this means

no more than 10 links separate processors and that only 10 links need to be managed

by each processor. It is interesting to compare this to the other two interconnection

geometries that have been widely studied -- 2-dimensional meshes and pyramids.

Figure 2-6 shows mesh and pyramid geometries.
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For a small class of problems the 2-dimensional mesh is ideal but, in general,

interprocessor communications can be a limitation -- in the worst case,

communications between processors must traverse 2N1/2-1 links and the small fixed

number of links at each processor (__ 4) is a source of congestion. The pyramid is

better in many respects -- the communication delay between processors is
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logarithmic as it is with the hypercubes, but the fixed number of links connected to

each processor (__ 9) is also a source of congestion.

The above points undoubtedly made hypercubes attractive to commercial

interests wishing to produce massively parallel processors, but there was another

ingredient important to their popularity: researchers at Caltech demonstrated that a

hypercube (the "Cosmic Cube") could easily be built with off-the-shelf

microprocessor components [Fox, 1985 and Seitz, 1985]. Many of the other proposals

for massively parallel machines require complex custom chips. This is a more

serious restriction than it might first appear, if one considers that a component

count of more than a few tens of thousands of ICs puts air-cooled systems at the

outer limits of reliability (regardless of the complexity of the subsystem within the

ICs).

The first commercial machines were introduced in 1985/6 by Intel, NCUBE,

and Ametek. The NCUBE/ten, which had the most impressive specifications of the

first generation machines, was capable of a peak performance of 500 MFLOPS (1024

processors, single precision arithmetic) [Hayes, et al., 1986]. In trial experiments we

found that about 30% of that capability could be utilized on typical scientific codes

like Linpack [Mudge, et al., 1986]. However, a number of new techniques had to be

developed to cope with the lack of shared-memory before this level of performance

could be obtained, and, unfortunately, many of these techniques were application

dependent and do not generalize.

The next generation of hypercube machines can be expected to have a peak

performance that is several times that of the NCUBE. Intel has already moved in

this direction with the addition of the iPSC-VX machine to their product range.

This version of the iPSC has a 20 MFLOP vector processor with 8 MBytes of memory

attached to each node. In addition, NCUBE has recently announced the availability

of the NCUBE-2 with up to 8,192 processors, each with 8 MBytes of memory and

capable of 3.3 MFLOPS, for an aggregate peak performance of 27 GFLOPS [Bacon,

1989]. In addition to improvements in raw processing power, the inter-processor

communication rates can be expected to increase dramatically. This will occur

through improvements on two fronts: 1) special hardware to support very high

speed communications is being developed; and 2) software that works with the new

hardware is being developed to replace the current store-and-forward message

routing with newer techniques such as virtual cut-through and low-overhead

nearest neighbor communications [Mudge, et al., 1987]. The improvements may be

sufficient to allow the new machines to be viewed as logical shared-memory

machines, i.e., access to remote shared variables will no longer be prohibitively time

consuming.

As noted earlier, there is a second class of parallel architectures, SIMD

parallel, which is fundamentally different from the MIMD parallel architectures

discussed thus far. SIMD parallel computers are characterized by many identical

processors (for example, 4096 processors for the Active Memory Technology (AMT)
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Dap; 16,384 for the MasPar; and 65,536 processors for the Connection Machine CM-2

offered by Thinking Machines, Inc.). The processors in a SIMD parallel computer

are generally simple. In the Connection Machine and AMT DAP, the processors are

single bit processors and in the MasPar they are 4-bit processors. These machines

operate in a lockstep (synchronous) fashion, controlled by a single supervisor CPU.

That is, each processor performs the same instruction at the same time. This is in

contrast to a parallel MIMD processor with many CPUs, each of which operates
independently and asynchronously.

From a functional standpoint, there are important similarities between SIMD

parallel and SIMD vector architectures. In essence, a SIMD parallel processor is still

a serial processor, in the sense that one can look at a single instruction from the

control processor to all the distributed processors as the analogue of a single vector

instruction of a vector processor. For example, consider the AMT Dap with 4,096

single bit processor and a Cray with a 64 word (64 bits each) vector. The result is a

vector, 4,096 bits in length for both machines. These machines, while originally

developed for AI applications, are showing impressive performance on scientific

problems due to their ability to perform vector and matrix operations.

A final type of distributed memory parallel processor is that based on the

transputer. For example, the Meiko parallel processor utilizes Inmos Transputers as
the nodes. A Transputer is basically an integrated chip with custom CPU and "built-

on" communications connections (4 links per processor). In essence it is an"off-the-

shelf" building block for parallel processors, since they can be arranged in various

ways, including a hypercube (maximum order 5), ring, or grid, among others. There

is no theoretical limit to the number of Transputers that can be linked together, the

largest is probably at the University of Edinburgh, with over 300 Transputers. A

production Monte Carlo particle transport code, MONK6, has been successfully

ported to the Meiko and is packaged along with the Meiko for potential buyers. The

advantage of the Meiko is its relatively large memory per processor (up to 8 MBytes)

and its maturity, since it has been a commercial product for a number of years, with
mature operating system and compilers.

2.5.2 Shared Memory Machines

Shared memory machines can conveniently be divided into two groups:

those that use multistage-ICNs to connect their processors to the shared memory,
and those that use more conventional means, such as a shared bus. We will discuss

the multistage-ICN machines first, in the following subsection. It is interesting to

note that, apart from a few exceptions, these machines are experimental.

Multistage-ICN Based Machines. Multistage-ICNs were developed to provide

a high bandwidth connection to a shared memory without incurring the prohibitive

complexity of a crossbar network. As such, they offer the best opportunity to equal

the massive parallelism of distributed memory machines while retaining the ease of

use of a shared memory architecture. They are intended for very large scale
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programs in which there is significant intra-program parallelism. The multistage-
ICN that connects the processors to the shared memory is a key feature of these
architectures. Indeed, the multistage-ICN has been the subject of a considerable
amount of research in its own right [Siegel, 1985]. Examples of machines that use
multistage-ICNs are the University of Illinois Cedar machine [Kuck, et al. 1986], the

Purdue PASM [Siegel, et al., 1981], the NYU Ultracomputer [Gottlieb, et al., 1983], and

the RP3, a machine based onthe NYU work that is being built by IBM [Pfister, et al.,

1985]. These machines are all experimental prototypes that will have anywhere

from a few hundred to several thousand processors. The BBN Butterfly [Crowther,

et al., 1985] with up to 504 processors is currently the only commercial machine in

this class. All these machines use variations on the Omega multistage-ICN first
proposed by Lawrie [1975].

The practical importance of multistage-ICNs is likely to grow as we gain

experience from experiments such as the RP3 and Cedar. Therefore, we will devote

the rest of this subsection to discussing the operation of these networks.

Figure 2-7 shows a multistage-ICN, the shuffle-exchange network [Stone,

1987], a variation of the Omega network mentioned above. We have shown it as

connecting processors to a set of memories. These memories together form the

shared memory. In addition, each processor usually has its own cache or local

memory. Other organizations are possible; for example, the processors could equally
well be connected back onto themselves. In such a case the local memories of each

processor would form the shared memory. A shuffle-exchange network that

connects N processors to N memories has n (= log2N) stages. Each stage consists of a

perfect shuffle connection pattern followed by N exchange boxes. The exchanges are

2 x 2 crossbars that can connect any one of the two input ports to any of the two

output ports. For a message entering an input port, one bit is sufficient to direct it to

the desired output port. A 0 and 1 are shown on the diagram of the exchanges to

indicate the output port that a message will be directed to by its routing bit. The

perfect shuffle gets its name by analogy with the shuffle operation on a deck of cards.

If we imagine the left side of the perfect shuffle pattern to be the positions of cards in

a deck (we have an 8 card deck in Fig. 2-7), then the right hand side of the pattern

shows the position of the cards in the deck after a perfect shuffle operation.

To route a message through the shuffle-exchange network, a destination

address is required that identifies the memory to be accessed. At each stage M in the

network the message passes through an exchange box. A bit from the destination

address is used to determine which output port of the exchange box the message

should be directed to. At the first stage the first bit is used, at the second stage the

second bit is used, and so on. Figure 2-7 shows a message being routed from P2 to
memory 1102 .
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Figure 2-7. A Shuffle-Exchange ICN

Multistage-ICNs provide a high-bandwidth connection to a shared memory.

However, congestion can still occur if two messages require the same output port of

an exchange box. The effects of congestion can be reduced by adding buffers at the

inputs of each exchange. The network can then be operated in a pipelined manner.

The control and scheduling of these networks is quite complicated especially if

buffering and pipelining are added. Multistage-ICNs offer the possibility of building

massively parallel machines with shared memory. These would be ideal execution

vehicles for AI programs, and, in particular, the kinds of strategy-level programs

that will be part of any smart robot. Early work on building prototypes has been

encouraging, but much work remains if these networks are to realize their potential.

Shared-bus Machines. Machines in this class are comprised of at most a few

dozen processors connected to a shared memory over a high speed bus. To date,

they have been by far the most successful parallel processors from a commercial

standpoint. This category includes such large parallel processors as the Cray

multiple processor products (e.g., Cray X-MP, Cray-2, and Cray Y-MP), the IBM 3090-

600, and the Alliant FX series of minisupercomputers. Figure 2-8 illustrates the

architecture of the Alliant FX/80. These computers have operating system features

and extended Fortran compilers which allow parallelism within a single Fortran

job. In addition to these well-known examples, there are shared-bus parallel

processors which are primarily intended to be used in a multiprogramming mode,

where complete programs execute sequentially on a single processor, that is, there is

no parallelism within each program. The processors themselves are typically 32-bit
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microprocessors with a local cache, such as the Sequent and Encore computers

[Dongarra and Duff, 1989].

Figure 2-8. Architecture of Alliant FX/80

The design philosophy of these machines is evolutionary. They are based on

off-the-shelf processors and they are integrated by a common backplane -- the shared

bus. Most of the technology is well understood. The only exceptions are the

extensions to the operating system required to handle multiple processing resources,

and mechanisms to distribute interrupts and exceptions across several processors.

This evolutionary approach makes a lot of sense from a commercial viewpoint --

there is less uncertainty (and risk). However, it does appear that the shared bus may

be an insurmountable obstacle to expansion. On the other hand there have been a

number of developments that will allow systems to be built with several hundred

processors. These include larger caches and improved caching strategies that reduce

the per processor bus traffic.

2.5.3 Other Technologies

Super-minicomputers and Minisupers. The rapid advance of computer

hardware technology means that features that today are found in supercomputers

are likely to be found in tomorrow's microprocessors. This will have a significant

impact on distributed parallel architectures. Some important features are vector
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processing and the use of very high speed circuit technologies such as ECL (emitter-

coupled logic) and GaAs (Gallium Arsenide).

These machines have already impacted the design of less costly machines. A

notable example that was already mentioned in the section on distributed-memory

machines is the Intel iPSC-VX. This machine relies on high performance chip sets

that use a combination of vector processing techniques and advanced technology for

their logic circuits to achieve performance in the range 1-20 MFLOPS.

The circuit technology of these chip sets is usually a bipolar technology such

as ECL, which was pioneered for supercomputer use. GaAs, which is also being

pioneered for super- computers, promises a factor of ten improvement in

computation speeds over that obtained using ECL. To give an illustration of the

impact of these technologies, consider an arithmetic unit constructed with

conventional high performance logic circuits (e.g. CMOS) that has a peak

performance of 10 MFLOPS. If the same unit is constructed from ECL it will be

capable of a peak performance of about 20-30 MFLOPS. If it is constructed from GaAs

logic circuits it will be capable of a peak of about 40-50 MFLOPS. Of course, GaAs

technology is still in its early stages.

Systolic machines. Systolic computers were first proposed by H. T. Kung and

C. E. Leiserson of Carnegie-Mellon University [1980]. Unlike most of the other

architectures described in this section, systolic machines have not been

commercialized (notwithstanding a few application-specific machines). Systolic

machines are a marriage of pipelining techniques with VLSI technology. The idea is

to construct highly parallel computers from iterative arrays of computing elements

(cells) and then to stream data through the array so that the computations are

performed in a pipelined fashion. The analogy with the blood stream lead to the

term systolic being adopted to describe such computations.

The general concept of constructing arrays of identical cells is an ideal match

with integrated circuit technology, because it is particularly suited to the fabrication

of systems which conform to a repeated pattern (memory chips are the prime

example). In addition, computations performed by arrays of cells usually lend

themselves to pipelining, hence high throughput rates are possible. Finally,

streaming data through an array of computing cells greatly reduces the memory

bandwidth requirements because intermediate results are never stored in memory,

instead they are sent directly to the next cell in the array.

x 3 x 2 x 1

w 1 w2

Figure 2-9. Systolic Array for Convolution
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The early ideas for systolic machines were quite elaborate; for example, 2-

dimensional arrays of hexagonally connected cells were proposed. More recent

examples have been simpler. The best known current project, the Warp computer

[Annaratone, et al., 1987], is just a simple linear array, although the cells are complex

computers. To illustrate the operation of a systolic machine, consider Fig. 2-9. It

shows an array for computing the convolution, Yl, ..., Y,+l-k, of a set of weights Wl,

.... w k with an input sequence x 1..... x n, in other words,

Yi = WlXi + W2Xi+l + "'" + WkXi+k-1, i =1, ..., n+l-k

The sequences of x's and w's move through the array in opposite directions. When

an x meets a w in cell i, they are multiplied and accumulated into the partial result

for Yi. After the streams have completed their passage through the array the results

(yi's) are left in their respective cells. To make sure that every x i meets every w i the

components of the two sequences are spaced two cycles apart.

Clearly, the applications for systolic machines are limited to computations

that can be can be pressed as convolutions or vector operations. This includes a

number of important operations as well as convolution that are useful for many

signal processing applications that occur in robotics. For example, the system of Fig.

8 formed the basis for a pattern matching chip [Foster and Kung, 1980]. Systolic

machines are likely to find a position as application-specific attached processors.

Dataflow Machines. Dataflow computers had their beginnings in the late

1960's and early 1970's with the work of Jack Dennis [1969]. Since their inception

dataflow machines have held out the promise of high performance parallel

processing. A number of experimental machines have been constructed [Dennis,

1979], but the promise has yet to be fulfilled.

The basic idea behind dataflow machines is to have the hardware detect when

all the data for an executable statement (its operands) has been computed and then

to schedule that statement for execution. For example, the statement,

A=B+C;

would be readied for execution as soon as the values for B and C were calculated.

The execution of instructions is determined by the flow of data and not by a program

counter, as is the case with the von Neumann architecture. In principle this allows

instructions to execute in parallel because the only constraint on the ordering of

their execution is the presence of data. The idea is an elegant one, but it is not

without some problems. One that is immediately apparent is the need to build

computer hardware that can efficiently detect when the input data of a statement

has been computed. This requires a substantial change in the way computers are

constructed, ruling out the use of current hardware. Even if this is achieved, the
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degree of parallelism that can be obtained will be no better than can be extracted by

modern compiler techniques.

It would appear that dataflow machines have "missed the boat". The reasons

for this are complicated. One factor is undoubtedly that they represented too great a

departure from the status quo. A dataflow computer would be incompatible with

conventional computers, and to use them appropriately would require a revolution

in the computer world, from the standpoint of operating systems, compilers, and

programming. Such a revolution would only be attractive if the improvements in

performance were likely to be considerable; however, the potential for a quantum

jump in performance has yet to be convincingly demonstrated.

2.5.4 Concluding Remarks

In this section, we have tried to err on the side of surveying too many

architectures. On the other hand we have not included anything about the

relatively new field of neural networks. This is because neural networks are, strictly

speaking, a model of computation, not an architecture, and architectures inspired by

this line of research have yet to be defined.

In the supercomputer category it has not been uncommon for machines to

have more than one processor, and, since the days of the CDC-6600, multiple

functional units have been common. However, as we have seen from the survey,

only recently have a number of more "affordable" parallel processors appeared.

These range in type from massively parallel cubes to relatively conventional shared-

bus architectures. This relatively sudden emergence of a wide range of modestly

priced commercial parallel processors has opened up tremendous possibilities for

research into parallelism that goes beyond the paper studies of the past, and is going

to have a profound impact on the kinds of things that we will be able to compute in

the near future. Nowhere is this likely to have more impact than in the

computational problems that are encountered in science and engineering.

There is another class of "parallel processors" that should be mentioned. This

is a network of relatively cheap workstations (e.g., from Apollo, Sun, DEC, IBM, etc.)

which can be combined to work in parallel on a single task. For example, the PAX-1

system from VXM Technologies can be used to transform a network of DEC VAXes

into a parallel processing computer. The potential of these individual machines is

such that this alternative mode of parallel computation must be considered. For

example, the new System 6000 workstations from IBM are faster than a Cray XMP

(in scalar mode), and nearly as fast as the Cray YMP. Since these workstations cost a

fraction of a Cray XMP or YMP, the price-performance ratio of these computers is

outstanding. This has been noted in a recent article [1990] in the New York Times

about the so-called "killer micros", pertaining to the use of many low-cost

microcomputers to perform scientific computation at speeds greatly in excess of

current-day supercomputers. Thus, a candidate "parallel computer" for scientific

computation may very well be networks of advanced function workstations.
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2.5.5. Commercially-Available Vector and Concurrent Computers

Table 2-2 contains a list of vector and parallel processors that are

commercially available at the present time. This table does not include many of the

experimental machines mentioned above since they are either special purpose or

else not in a commercial category. In general, advanced function workstations have

not been added (e.g., the IBM System 6000, the Apollo DN10000, the "Stardant", or

the DEC SparcStations), although these machines are beginning to blur the

distinctions between workstations and supercomputers, as noted above.

Table 2-2. Vector and Parallel Computers Currently Available

Name

Alliant FX-80

Alliant FX/2800
Amdahl VP-1400E

AMT DAP 610

Ardent Titan

BBN Butterfly TC2000
Convex C-210

Cray-2

Cray-3

Cray-XMP

Cray-YMP
Elxsi M6460

Encore 320

Hitachi $820

IBM 3090/600S

Intel iPSC/2

Intel iPSC/2 VX
International Parallel IP-1

MasPar
Meiko

NCUBE

NCUBE-2

NEC SX-2A

Sequent Symmetry $81

Thinking Machines CM-2

Unisys ISP 1100/90

Type
MIMD

MIMD

SIMD-V

SIMD-P
MIMD

MIMD

MIMD

MIMD

MIMD
MIMD

MIMD

MIMD

MIMD

SIMD-V
MIMD

MIMD

MIMD

MIMD
SIMD-P

MIMD

MIMD

MIMD

SIMD-V

MIMD

SIMD-P

MIMD

CPU

Scalar/vector

Scalar/vector

Scalar/vector
Bit-serial

Scalar/vector
Scalar

Scalar/vector

Scalar/vector

Scalar/vector

Scalar/vector

Scalar/vector

Scalar

Scalar

Scalar/vector

Scalar/vector
Scalar

Vector

Scalar
4 bit-serial

Scalar

Scalar

Scalar

Scalar/vector
Scalar

Bit-serial

Scalar/vector

Memo_
Shared

Shared

Shared

Shared
Shared

Shared

Shared

Shared

Shared
Shared

Shared

Shared

Shared

Shared
Shared

Distributed

Distributed

Shared
Shared

Distributed

Distributed

Distributed

Shared

Shared

Shared

Shared

MBytes
256

1,024

1,024
64

128

16,096

4,000

2,048

4,096
128

256

2,000
128

512
512

1,024

1,024
264
256

4,000
524

65,536

1,024
240

512

70

N

12

14

1

4,096
4

5O4

4

4

16
4

8

10

20
1

6

128

128

33

16,384
800

1,024

8,192
1

3O

65,536
4

Clock

170

7

100
62.5

40
4.1

2

8.5

6

31.25

67
4

16

100

50

125

50

62.5

30

MFLOPS

188.8

1,000

1,714

64

10,080
200

1952

16,000
940

4,000
100

5O

3,000
8OO

8O

2,560
60O

6OO

1,000
300

27,000

1,300
390

31,000
67

Notes: (1) Generally only maximum configuration per vendor is given

(2) N = maximum number of processors

O) MBytes = maximum memory configuration in megabytes
(4) SIMD-V = SIMD (vector); SIMD-P = SIMD (parallel)

(5) Clock = cycle time (ns)

(6) Only commercially-available products included
(7) List does not include attached processors or "one-of-a-kind" products

(8) MFLOPS = "peak" 64-bit performance

(9) Primary source of data : [Dongarra and Duff, 1989]
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CHAPTER 3

PARALLELISM IN PROBABILISTIC STRUCTURAL MECHANICS

3.1 INTRODUCTION

Probabilistic structural mechanics problems are inherently parallel. This

parallelism makes these problems well suited for investigation of parallel

processing implementation. In this chapter we first briefly review probabilistic

structural mechanics methods and then identify the sources of parallelism.

Several levels of parallelism in PSM problems may need to be exploited in

order to achieve optimal speedup on a parallel processing computer. Two macro-

scale levels of parallelism are illustrated in Figure 3-1. The top level parallelism

results from parallelism associated with the probabilistic aspects of the problem, and

the lower level parallelism results from the structural mechanics aspects of the

problem. In addition to these macro levels of parallelism there are many levels of

micro-scale parallelism. These are additional levels of parallelism associated with

the structural mechanics aspects of the problem, including both concurrency and

vectorization. These will be further described in the following sections.

3.2 PARALLELISM IN PROBABILISTIC COMPUTATIONS

3.2.1 Overview of PSM Methods

Before identifying the parallelism inherent in the probabilistic computations

required in a PSM problem, we first present a brief overview of PSM methods. The

purpose here is to provide conceptual descriptions to aid in the discussions of

parallelism that follow. In depth treatment and mathematical details of PSM

methods can be found in several texts [e.g., Ang, A. and Tang, W., 1984; Madsen, H.,
Krenk, S., Lind, N., 1986].

Simply stated, in a PSM problem it is necessary to determine the probability

distribution of structural response or damage. For example, Figure 3-2 shows the

results of a PSM analysis for the second stage turbine blade of the Space Shuttle

Main Engine [Newell, et al., 1989]. The PSM results are given by the plot of the

response cumulative distribution function (CDF) shown in the figure. The CDF

gives the probability that various effective stress levels will not be exceeded.

Mathematically, the problem is to solve for the probability distribution of a

response variable, w, that is a function, g, of a vector of variables, x. The function,

g(x), is commonly called the performance function. The vector of variables, X,

represents all the problem variables, both random and deterministic, such as

member dimensions, material properties, boundary conditions, and loadings. The

response cumulative distribution function (e.g., Figure 3-2) is obtained by evaulating
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Figure 3-2. Example PSM Analysis

P [g (x) < y] (3-1)

(where P denotes probability) for all values of y. We note that, in general, we are

interested in multiple stochastic response variables, representing response at

various points in the structure.

For PSM problems, evaluation of the performance function requires solution

of the structural mechanics problem. For problems of practical interest this may

entail solving systems of linear equations, systems of nonlinear equations, or time

variant dynamical systems.

A number of methods have been developed to evaluate the response

probability functions. All are based on one of two basic approaches: (1) partial

derivative analysis, or (2) pseudo-random sampling. Pseudo-random sampling

methods include, for example, Monte-Carlo simulation, Monte-Carlo simulation

with variance reduction (e.g., Importance Sampling, Stratified Sampling), and

Experimental Design methods. Partial derivative methods include, for example,

First Order Reliability Methods (FORM), Second Order Reliability Methods (SORM),

First Order Second Moment Methods, and Second Order Second Moment Methods.

In addition, hybrid methods are possible wherein, partial derivative methods,

sampling methods, or perturbation methods are used to develop a first or second

order response surface and Monte-Carlo methods are then used to evaluate the

response uncertainty.
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For purposes of our discussions, we present below the basis of the most
common partial derivative method, FORM, and the Monte-Carlo simulation
method. We also present here, the transformation required for treatment of
correlated variables, which is also a source of parallelism in PSM computations and
has been implemented in the computer code developed under this effort.

FORM. In the First Order Reliability Method, the performance function, g, is

approximated by a linear hyperplane. Since, the performance function will, in

general, be a nonlinear hypersurface, the approximate hyperplane is fit as a tangent

to the hypersurface at a single point. This point is selected to be the most probable

failure point on the surface. Once the hyperplane is fit, it is straightforward to
evaluate Eq. 3-1 for the linearized performance function.

The most probable failure point is given by:

_/E{Og12 (3-2)

(for all n random variables) where the random variables have been transformed

into the standard normal space, i.e., with zero mean and unit variance;

• xi - _
X i --

o-_ (3-3)

and are assumed to be uncorrelated (treatment of correlated variates is described

later); and _ is the distance to the most probable failure point in the standardized
normal space, i.e.,

= _/X'i 2 +... + X'n 2 (3-4)

Note that the most probable failure point is the point of minimum distance

from the origin to the failure surface in the standardized space. This distance is

often referred to as the reliability index and is itself a measure of structural

reliability.

A number of methods have been proposed for evaluation of the most

probable failure point. These will not be presented here. It is important to note,

however, that in most approaches the solution will require evaluation of the

derivatives of the performance function. These derivatives must typically be

evaluated for each random variable, and at several points on the failure surface
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(since the solution methods are iterative in nature). The derivatives are most

commonly evaluated by using finite differences since the performance function will

normally not be available in close form. Hence, the use of the FORM method will

require repeated evaluations of the performance function with perturbed values of

the problem variables. This is clearly an inherently parallel problem.

Monte-Carlo Simulation. In Monte-Carlo simulation, the performance

function is solved repeatedly for different values of the problem variables and the

results scored in order to obtain an estimate of the probability given by Eq. 3-1.

Mathematically, this probability can be estimated as the statistical expectation of the

event, g (x) < 0, and calculated as:

Pg = I I(g(x) )fx(x) dx = E[ I(g(x) ) ] (3-5)
x

where I(o) is the indicator function and E[o] the expected value (statistical mean).

The indicator function I(.) is defined in accordance with the event under

discussion. That is, for the event g(x) < 0, then I(.) is defined as I(g(x) < 0) = 1 for g(x)
< 0 and 0 otherwise.

If the density function fx(X) exists and independent sample vectors of X can be

generated, the estimation of Pg can be calculated as the sample mean of I(g(xi) ), i.e.,

N
^ 1

Pg = Pg - N _2I(g(xi)) (3-6)
i=1

where N is the total number of samples, and xi the ith sample vector of X. The

estimator Pg itself has an uncertainty, due to the finite number of samples (or

simulations). In theory, this uncertainty can be quantified by the variance of the

estimator which is calculated by

1 Var {I(g (x}))N
N

_ 1 Z [(I{g (Xi))}- _g]2

N{N- 1}i__ 1

(3-7)

The coefficient of variation or relative statistical error of Pg is then evaluated by

4T Td (3-8)
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Eq. 3-8 can be used to estimate the required sample size for a prescribed relative
statistical error.

Therefore, the basic steps in numerical Monte Carlo simulation are: (1)

generating sample variables based on the density function fx(x); (2) evaluation of the

performance function g(x) using the generated sample variables; (3) calculating

I(g(x)); and (4) performing the scoring procedures as outlined in Eqs. 3-6 and 3-7.

Since the g function must be repeatedly evaluated for independent sample

values of the random variables, the numerical procedure can be carried out in

parallel. That is, the g function can be evaluated for the different sample sets on

independent processors. Since this method will be implemented on a parallel

processor, as described in the next chapter, we present some additional relevant
details below.

If X consists of independent random variables (Xl, x2, x3, ° ° ", Xm), the sample

variables can be generated by direct inversion of marginal cdf's of individual
random variables, i.e.,

F_i(ui),Xl = i = 1, 2, 3, • • °, m (3-9)

-1

where Fxi(.) is the inverse cdf of random variable Xl , and u i is a generated random

number from a uniform distribution.

Without losing generality, it can be assumed that all random variables are

standardized, i.e., with zero mean and unit variance. Moreover, if all the random

variables are of normal distribution, Eq. 3-9 can be rewritten as

-1
x1 = • (ui), i=1,2,3,°o.,m (3-10)

-1
where _ is the inverse standard normal distribution function.

Treatment of Correlated Variates. In the case where the x's are correlated

standard normal with a correlation coefficient matrix R, 1 it is possible to find a

transformation such that the x's are transformed into a set of independent standard
normal variables z's. One such transformation is as follows:

1The correlation coefficient matrix is obtained from statistical analysis of data for the problem input
variables. Examples are given in Sues and Twisdale, 1988.
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-1
z = T(x) = L x (3-11)

where L is

correlation

generated by

the lower

coefficient
triangular matrix of the Cholesky decomposition of the

matrix, i.e., R = L L T The sample vector x can thus be

-1
x = T (z)

= L z = L [ (1)-l(ul), (1)-1(u2), (I)-1(u3), • ° °, cl)-l(um) ]T (3-12)

The procedures described above are valid only for normal variates. To

generate samples from non-normal random variables, additional transformations

are necessary. The Rosenblatt transformation [Rosenblatt, 1952; Hohenbichler and

Rackwitz, 1981] is one such transformation. However, it requires the calculation of

conditional probabilities which are often complex. Among other transformations,

the Nataf-model transformation, proposed by Nataf [1962] and enhanced by Liu and

Der Kiureghian [1986], has more merit in practical application.

The Nataf-model transformation first defines the marginal transformation
for each individual random variable as

Zl = (I)-1[ Fxi(X i) ], i = 1, 2, 3, • •., m (3-13)

Thereby, following the rules of probability transformation, the joint pdf of X can be
written as

(_m( Z,R ")

fx(X) = fxl(Xl) fx2(X2) " " " fxm(Xm) (_(Zl) (_(z2) • • • _(z m)
(3-14)

where _(o) is the standard normal pdf and dpm(z,R') , the m-dimensional joint pdf of

standard normal variables z with correlation coefficient matrix R'. R" is a modified

correlation coefficient matrix with element p'q defined in terms of the original

correlation coefficient pq via
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,,o ¢_2(zi,zj,Oij)

xi xj fxi(xi)fxj(xj) ,(zi) *(C
--00 --00

dxid_

oo oo

-oo -oo

(3-15)

For each pair of marginal distributions with given pq, iterative procedures are

necessary in order to solve Eq. 3-15. To avoid these calculations, empirical formulae

have been developed for some commonly used distributions [Liu and Der

Kiureghian, 1986]. For arbitrary types of distributions, a method based on the

truncated expansion of xi xj with respect to zi and zj was also developed [Wu, et al.,

1988]. In the latter approach, however, if nonlinear terms are retained, numerical

procedures are still needed for computing higher order derivatives and solving a

nonlinear algebraic equation.

In short, a practical procedure for generating random samples from correlated
non-normal random variables can be described as follows,

(1) Transforming the original correlation coefficient matrix R into R"

through the Nataf-model transformation ;

(2) Using the Cholesky decomposition R'= L LT and Eq. 3-12 to generate

samples of zi's;

(3) Applying the inverse transformation of Eq. 3-13 to obtain the samples

for xi's.

3.2.2 Identification of Parallelism

From the overview of PSM presented above, there are several fundamental

sources of parallelism in PSM computations. The major source of parallelism

results from the required multiple evaluations of the performance function. In
addition, the Nataf-model transformation, for transformation of correlated variates,

is also inherently parallel. This is because the calculation of the modified correlation

coefficient for any pair of random variables can be carried out independently.
Hence, the elements of the modified correlation coefficient matrix can be calculated

concurrently. Other sources of parallelism are also present that are specific to the

PSM method being used, as described below.
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Partial Derivative Methods. For the partial derivative methods, multiple

evaluations of the performance function (g function) are required for calculation of

the partial derivatives (see Eq. 3-2). These partial derivatives are typically evaluated

using finite differences, since the performance function is not usually available in

close form. For example, the performance function may be in terms of the stress of a

particular member, which must be obtained from a finite element analysis.

The partial derivative of the performance function with respect to each
random variable must be evaluated on each iteration. Hence, the number of

perf.ormance function evaluations is proportional to the product of the number of
random variables and the number of iterations. If two-sided finite differences are

used, then evaluation of each partial derivative requires two performance function

evaluations; whereas, if one-sided finite differences are used (which will be more

expedient but less accurate) then each partial derivative requires one performance
function evaluation.

Since the iterations must be carried out serially, only the performance

function evaluations for a single iteration can be carried out in parallel. Hence, the

degree of parallelism is related to the number of random variables. The greater the

number of random variables, the greater will be the percentage of the calculations

that can be carried out in parallel. If the number of random variables is not

significantly larger than the number of processors, it will be difficult to keep all

processors busy during the concurrent operations. There are several reasons for

this: (1) it is unlikely that the number of random variables will be an even multiple

of the number of processors; (2) the length of time required to compute the

individual partial derivatives may be different for the different variables; and (3) it

is not possible to start a new iteration until all partial derivative evaluations from

the current iteration are complete. Hence, for some problems it may be difficult to

achieve high efficiency by taking advantage of this parallelism. Note, however, that

if second order methods are used, the number of performance function evaluations

per iteration will increase significantly, thereby, increasing the parallelism. Thus,

second order methods may be more suitable for parallel implementation.

There are two other related sources of parallelism in partial derivative

methods that can be utilized to achieve greater speedups. These occur in evaluating

different performance functions, and in developing the cumulative distribution
functions (CDF).

When developing the complete CDF, it is necessary to compute the non-

exceedance probability for different response levels. This is illustrated in Figure 3-3.

Here, we could allocate different groups of processors to different response level

calculations. Within each group of processors, different processors perform the

finite difference evaluations for different variables. In such cases the degree of

parallelism is significantly increased, and the processor idling time identified above
can be reduced.
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An example of a case where different performance functions are evaluated

would be when evaluating the CDF for stresses in more than one part of a structure.

Another example would be a case in which different failure modes must be

evaluated (e.g., demonstration of reliability for stress criteria, deflection criteria, or

stability criteria). In effect this is identical to the problem of multiple response level

calculations, and multiple processors are assigned to solve each performance

function.

Monte-Carlo Simulation. Parallelism in Monte-Carlo simulation results

from the repeated independent evaluations of the performance function. The

number of performance function evaluations required will be controlled by the

accuracy required for the tails of the response distribution and can typically range

from the order of thousands to tens of thousands. If only first and second order

response statistics are required (mean and standard deviation) then the number of

performance function evaluations required will be significantly reduced (typically

less than 100 will be required).

We note that the other sources of parallelism that arise in the partial

derivative methods for evaluation of the entire CDF and different performance

functions are not present here. In Monte-Carlo simulation, the additional work

required to obtain one point on the CDF, or the entire CDF, is negligible. It is only

necessary to keep track of the score for each desired point as each history in the

simulation is completed. Similarly, it is a trivial matter to evaluate the response

CDF for different parts of the structure by scoring the response at different locations.

An exception would be when multiple failure modes must be considered and when

these failure modes require different types of analyses. For example, member

checking for overstress vs. checking for stability, vs. checking for a frequency shift.

Other Methods. There are several other methods that can be used for PSM

problems, as mentioned earlier. These methods exhibit parallelism similar to that

described above, but to different degrees. For Monte-Carlo simulation with variance

reduction, the degree of parallelism is reduced since the number of performance

function evaluations required is reduced. However, with some variance reduction

methods, such as importance sampling, when different performance functions must

be evaluated, different sampling strategies, and hence, different simulations must be

performed (analogous to the extra effort involved in partial derivative methods for

multiple performance functions). Thus, the parallelism of Figure 3-3 is relevant

(while, as pointed out above, it is not relevant for direct Monte-Carlo simulation).

For hybrid methods wherein either sampling, partial derivative, or perturbation

methods are used to develop a response surface, essentially all of the sources of

parallelism described above are present. Development of the response surface by any

of the methods will require multiple evaluations of the performance function. Also,

the use of different performance functions will usually require a different response
surface evaluation.
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Summary. Table 3-1 summarizes the sources of parallelism in various PSM
methods.

Table 3-1. Sources of Parallelism in Various PSM Methods

Method

FORM/SORM

Direct Monte-Carlo

Monte-Carlo w/ Variance

Reduction

Hybrid

Repeated
Performance

Function

Evaluations

for Perturbed

Inputs
X

X

X

X

Multiple
CDF Values

X

X

X

Multiple
Failure Mode

Analysis

X

X 1

X

X

Different

Structural

Response
Locations of

Interest

X

X

X

1Only when different analysis model or method is used for different failure modes

3.3 PARALLELISM IN STRUCTURAL MECHANICS COMPUTATIONS

Many sources of parallelism exist in structural mechanics computations; and

techniques to take advantage of this parallelism have been the subject of a

significant amount of research for the past several years. We briefly present here

some of the strategies developed for taking advantage of parallelism in structural

mechanics computations. It is likely that it will be necessary to use these strategies

in conjunction with those presented above to optimally exploit parallel processing

for PSM problems.

There are essentially three strategies that have been used for implementing

structural mechanics problems, in particular finite element methods, on parallel

processing computers. These include: (1) substructuring; (2) domain decomposition;

and (3) operator splitting.

Substructuring. The substructuring approach has been common in finite

element analysis for some time [Przemieniecki, J., 1963]. In this approach the

structure is broken down into substructures and solved as an assemblage of

superelements that relate forces and displacements at the boundaries of the

superelement or substructure. Substructuring techniques were developed in order

to break large structural problems into smaller, more manageable problems (of

particular importance when memory is limited) and to take advantage of cases

when structures are composed of replicating units. The application for parallel

processing is evident. Independent processors can work on the independent

substructures and development of the superelements. Once the superelements are

formed the structure must be assembled, and then solved on a single processor or

solved on multiple processors using an operator splitting technique (see below).
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Substructuring is relevant for parallel implementation of PSM problems since

memory requirements are large for concurrent performance function evaluations.

Taking advantage of both substructuring parallelism and the probabilistic

parallelism will make large PSM problems more manageable and increase the

parallel processing efficiency.

Domain Decomposition. Domain decomposition is similar to substructuring

in that the structure is broken down into sub-regions or sub-domains. It differs,

however, in that superelements are not created and the complete structure is not

act.ually assembled. Rather, each sub-domain is solved as an independent

initial/boundary-value problem. An example of domain decomposition, using an

approach to decompose an irregular grid to achieve a balanced workload while

minimizing the number of interface nodes is shown in Figure 3-4 [Farhat, et al.,

1987]. Since the solution at the sub-domain interfaces is unknown, the individual

sub-domain solutions must be iterated until the interface solutions converge. The

advantage of this method for parallel implementation is that it is not necessary to

finally assemble the entire structure for solution on a single processor. A recent

review of domain decomposition methods can be found in Chan, et al. [1989].

Figure 3-4. Decomposition of Irregular Grid Into Three Subdomains (after Farhat,

et al. [1987].

Operator Splitting. Operator splitting, in general, refers to the reduction of

the solution of a complex problem into the solution of several simpler problems.

Hence, essentially any parallel processing implementation is a form of operator

splitting. We use the term operator splitting herein to refer to numerical splitting

techniques that may not have a physical interpretation, as for the strategies
previously presented.

Iterative equation solvers, wherein only matrix multiplications are required

during the solution process [Fox, et al, 1988], are one such approach (e.g., the

conjugate gradient method). In general iterative solvers will not be as fast as direct

method solvers (i.e., Gauss elimination or Cholesky decomposition), however, since
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only matrix multiplications are required it is straightforward to break up the

numerical effort among available processors. Iterative equation solvers solve the

structural equations using an initial, assumed solution that is updated on

subsequent iterations until convergence is achieved. These techniques are also well

suited to PSM problems, wherein the structure must be repeatedly solved with

slightly perturbed input values. Hence, they are of particular interest herein and are

further discussed in Chapter 5 and in Appendix A.

It is also possible to use a number of techniques to decompose direct solvers

for application on parallel processing architectures. A recent application of the

Cholesky decomposition method by Agarwal, Storaasli, and Nguyen [1990] achieved

speedups ranging from 5 to 7 using 8 processors on a Cray Y-MP.

3.4 SUMMARY

There are a number of sources and levels of parallelism in both the

probabilistic computations and the structural mechanics computations for PSM

problems. The sources of parallelism in the probabilistic computations were

summarized in Table 3-1 and it was shown that a high degree of parallelism is

inherent in all commonly used PSM methods. Techniques for taking advantage of

the parallelism in structural mechanics computations were briefly reviewed in
Section 3.3.

Due to the limited scope of this Phase I effort, the review of parallelism in the

structural mechanics computations covered only currently used techniques. A

thrust of the Phase II effort will be identification of additional levels of parallelism

and how these can be implemented in parallel PSM applications. For example, in

many structural applications, different degrees of modeling detail are required for

different parts of a structure, such as in a crack propagation problem. Similarly

different levels of detail in the treatment of uncertainties are also required.

Assigning different processors to work on different parts of the structure and the

corresponding uncertainties presents a new challenge in parallel processing.
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CHAPTER 4

MCPAP: A MONTE-CARLO SIMULATION CODE FOR PSM PROBLEMS ON A

MULTIPROCESSOR COMPUTER

4.1 INTRODUCTION

In order to demonstrate the feasibility of implementing a PSM code on a

parallel processing computer, and to study the speedups and efficiencies obtainable,

a parallel PSM code was developed and implemented on an Alliant FX/80. The

Alliant FX/80 is a shared memory parallel processing computer with eight 64-bit

vector pipeline processors. Its architecture was described in Chapter 2. The code

developed for this effort, MCPAP, employs the Monte-Carlo simulation method

described in the previous chapter. Monte-Carlo simulation was selected for this

demonstration since it is the most readily adapted method to the parallel processing

environment (see Chapter 3). Monte-Carlo simulation is also the method of choice

in many instances (e.g., when the number of problem variables is large and the first

few statistical moments of the response are of interest, and when multiple

performance functions must be evaluated). Current and future developments in

parallel processing have the potential to make Monte-Carlo simulation a very

practical PSM method.

In this chapter, we present an overview of MCPAP and discuss some of the

coding required for parallel implementation. In particular we treat the problem of

random number generation and scoring in parallel. This is a unique problem for

parallel processing since these operations are not independent from simulation trial

to trial (in contrast to evaluation of the performance function, which is independent

from trial to trial). The programming details on a parallel processing computer are

not presented; for more information the reader may consult any one of a number of

texts on this subject (e.g., [Fox, et al., 1988]). The results of three example applications

are also given: (1) a cantilever beam problem with a closed form solution; (2) a two-

tier truss finite element problem; and (3) a 3-D space truss finite element problem.

4.2 OVERVIEW OF MCPAP

MCPAP is a direct Monte Carlo simulation shell for structural mechanics

applications with a library of random variable generators for ten commonly used

distributions. Generation of correlated random variables is handled through the

Nataf model transformation described in the previous chapter. Multiple scoring is

also facilitated, allowing the code to analyze multiple performance functions

simultaneously.

Two program modules are supplied by the user: XLIMIT is for calculating the

values of performance functions for a given set of sample variables, and PLIMIT is

for I/O and preprocessing the necessary data for those calculations. The latter will be
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executed only once during the simulation run, while the former will be called
repeatedly for as many times as the number of simulation trials. A finite element
code is often incorporated in these two modules for PSM. As such, the system
configuration including the information on nodal points, elements, and applied
forces, and necessary information on storage addresses for assembling the system
stiffness matrix are input and prepared in PLIMIT. The actions for assembling the
system stiffness matrix and carrying out the responses for a given set of sample
variables in each simulation trial are performed in XLIMIT.

The input data for MCPAP contains the statistical descriptions of the problem
random variables including means, standard deviations, bounds, and correlation
coefficients, and simulation control parameters such as number of trials, number of
performance functions, and seed for random number generations. The output
contains the event probability and statistical error of simulation for each
performance function. Figure 4-1 illustrates the general flow chart for MCPAP. The
vertical parallel lines indicate segments of the code that are executed in parallel, that
is, concurrently using all available processors.

4.3 PARALLEL IMPLEMENTATION ON THE ALLIANT FX/80

To implement a computer code on a parallel computer, it is first necessary to

identify the parallelism in the code, and then determine which parts will be

automatically parallelized by the compiler and which parts require recoding. The

Fortran compiler on the Alliant FX/80 will attempt to automatically optimize DO

loops for concurrency, and array operations for vectorization. This automatic

parallelization is briefly reviewed below, followed by a discussion of the specific

parallelization of MCPAP.

4.3.1 Parallel Code Construction

DO loops will be automatically optimized for concurrency (that is, executed

simultaneously), if calculations in different iterations of the same loop can be

executed independently. In order to do this, the compiler first checks for data

dependency between loop iterations. If a dependency is found, the loop will not be

executed in the concurrent mode. Also, if a DO loop contains certain statements,

such as a subroutine call, the compiler will not automatically optimize the loop.

One reason for this is that it is not possible for the compiler to determine if the

subroutine call in a certain loop iteration requires data from a previous iteration

(which could be executing at the same time on another processor). Similarly, in

order for array operations within a DO loop to be vectorized, there should be no

dependencies between iterations.

A number of programming techniques have been developed to avoid data

dependencies to allow automatic optimization to occur. Also, it is possible to

invoke parallelization through the use of optimization directives embedded in the
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Figure 4-1. Code Implementation on Alliant FX/80
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code. Discussions of these techniques can be found in a number of texts on parallel

processing, and we will only describe here one particular technique, of key

significance to the parallel implementation of Monte-Carlo simulation. If a portion

of a code is subject to a number of independent replications, it can be gathered into a

subroutine and called from inside a DO loop. The DO loop can then be optimized

for concurrent operation by preceeding the loop with a concurrent call directive, and

declaring the subroutine to be recursive. For example,

CVD$

PROGRAM MAIN

CNCALL

DO I=I,N

CALL SUB ( A, B, C)

END DO

END

RECURSIVE SUBROUTINE SUB ( A, B, C)

@

END

where CVD$ CNCALL is the concurrent call directive for the Alliant. By declaring

the subroutine to be recursive, each time the subroutine is called, storage is allocated

for a unique copy of the subprogram's local variables. Conversely, variables passed

through the argument list or in a common block are treated as shared variables. For

each iteration of the loop, a processor will be allocated to execute the operations

inside the subroutine. The Alliant FX/80 dynamically allocates the processors for

concurrent loop operations, so that as soon as a processor has completed execution

of the subroutine for one loop iteration, it is assigned to execute the subroutine for
another iteration.

In MCPAP local DO loops have been optimized and two major parts of the

code have also been optimized for concurrency by grouping them into recursive

subroutines. Within each subroutine, the code is vectorized, adding an additional

level of parallelism to maximize efficiency. Also, within the subroutines, automatic

compiler concurrency is suppressed, since there is no advantage to executing a

concurrent operation within a subroutine when the subroutine is executing on

other processors concurrently. This is particularly true for MCPAP on the Alliant

FX/80 since the granularity of the subroutine is large and it is executed many more

times than the number of available processors.

The first parallelized code segment is the procedure for the Nataf space

transformation. In this transformation, the calculations of the modified correlation

coefficient for any pair of random variables can be carried out independently.
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Hence, elements of the modified correlation coefficient matrix R' can be calculated

concurrently.

The second parallelized code segment is for the execution of the simulation

loop as shown in the flow chart. Procedures including sampling, performance

function evaluation, and scoring are all controlled by one master subroutine which

is declared to be recursive. The repetitive executions of this subroutine are

dynamically allocated to the multiple processors. That is, as soon as a processor is

free a new simulation history is allocated to the processor. This continues until all

simulation histories have been allocated. For example, if 1,000 histories are to be

performed, histories are dynamically allocated to the processors until the 1,000 th

history is begun. This strategy minimizes processor idle time without biasing

results. A slightly more efficient strategy would be to continue allocation until the

1,000 th history is complete. This strategy is not used, however, since it would bias

results to shorter executing histories.

Note that for parallel implementation, all random variables must be defined

as local variables so that a unique copy of these variables will be maintained for each

concurrently executing subprogram. For example, when the problem is a finite

element analysis wherein the structure properties are random, the stiffness matrix is

defined as a local array by dimensioning it within the recursive subroutine. In this

way each processor will operate on a unique copy of the structure stiffness matrix.

For large structures, maintaining multiple copies of the stiffness matrix can put a

heavy demand on available memory as wilt be discussed later in this chapter.

Conversely, deterministic problem variables can be passed through the

subroutine argument list or maintained in a common block, to be shared by all

concurrently executing processes in order to minimize memory requirements, and

maximize computational efficiency. For example, if in a particular problem only the

loading variables are random, the structure stiffness matrix need only be formed

once, and one copy may be shared by all concurrent processes.

4.3.2 Parallel Random Number Generation and Scoring

In direct Monte-Carlo simulation, evaluation of the performance function

(Figure 4-1) is independent from trial to trial. However, generation of random

numbers and scoring are not. Hence, special strategies are required to enable parallel

implementation.

Pseudo-random numbers are generated in MCPAP by the mixed congruential

method (see, e.g., Knuth, 1973). It is defined by

Xn+l = (aXn + c) mod m (4-1)

Rn+l = Xn+l /m (4-2)
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in which Xi is the i th random number of the sequence (or stream), Ri is the output

random number which is uniformly distributed, and a, c, and m are chosen in order

to make the random numbers as random as possible. As can be seen from Eqs. 4-1

and 4-2, each random number generation has to rely on the previously generated

number in the same stream. Concurrent execution of such recursive procedures on

multiple processors can cause duplication of random number sequences. Several

strategies for random number generation are possible to avoid this problem and

maintain parallel independent streams of random numbers.

The first possible strategy is to generate the whole set of random variables for

the total number of simulation trials prior to the simulation loop. However,

memory requirements for storing the entire set of random samples can easily

become prohibitive for practical PSM problems. To prevent this an alternative is to

generate the random variables for a fraction of the total number of simulations,

execute these simulations, and then generate another set of random variables. This

approach makes memory requirements more practical, at the expense of increased

overhead due to processor idling.

A second strategy involves generating the random numbers within the

simulation DO loop so that they are generated concurrently on different processors.

An approach that results in generation of exactly the same stream of random

numbers as would be generated on a serial computer is presented by Fox, et al. [1988],

based on work of Frederickson [1983], Brown [1983], and Barkai [1984]. Employed in
this approach is the fundamental relation between the n+k th and n th random

numbers for the congruential random number generator:

Xn+k = (AXn + C) mod m (4-3)

with

A = a k (4-4)

and

ak-1

C = l+a+a2+...+a k-1 - a-1 (4-5)

Note that A and C need to be calculated only once and stored. Then, if there are NP

processors, the sequence of, for example, the first three random numbers generated

on each processor can be listed as (subscripts denote position in the random number

sequence, superscripts denote processor number, and Y denotes the random number

that would be generated on a serial computer):

X_ )= Yo

X(lo ) = (aY o+ c) mod m = Y7
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(NP-1)
X 0 = (a YNP-2 + C) mod m = YNP-1,

X (0) = YO+NP

X(1) = YI+NP

(NP-1)
X 1 = YNP-I+NP,

and

X(20)= YO+2NP

X_ ) = YI+2NP

x(NP-1) = YNP-I+2NP

The method is illustrated in Figure 4-2 for the case of NP = 4. As the figure

demonstrates, the parallel processors use a staggered start and then leapfrog using

Equation 4-3. As mentioned above, this strategy is advantageous since it generates

exactly the same stream of random numbers as a serial random number generator

and the Monte-Carlo results are repeatable. Since individual simulation histories in

PSM problems can take different lengths of time to execute, all random numbers

should be generated at the beginning of the history and prior to the beginning of any

structural mechanics computations. This ensures that when the k th history is begun

the random numbers for the k- NP th history have already been generated. The use

of local variables in the structural mechanics computations, ensures that the k th

history calculations cannot corrupt the values used in the k- NP th history.

A third strategy developed and implemented herein is to establish an

independent stream of random numbers for each processor. Random seeds are

generated for each processor using a different random number generator. On each

invocation of a simulation trial, a function call to the Alliant's system library

function LIB_PROCESSOR_NUMBER is first executed which returns the processor

number of the processor that is allocated to the particular trial. The processor

number is used to fetch the previous set of random numbers generated by this

processor, which is then used to generate the next set of random numbers. By doing

so, in the concurrent process of the simulation trials, each processor only picks up

and works on its own sample stream and therefore no synchronization among the

concurrent trials is necessary.
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Figure 4-2. Strategy for Generating an Identical Sequence of Random Numbers on

Sequential and Concurrent Computers

As mentioned earlier, another numerical dependence between simulation

trials is in the simulation results scoring. In the conventional serial algorithm, a

carry-around scalar is used in the simulation loop to keep track of the scoring in
each simulation trial. That is, the running sum of the results of the simulation trial

(0 for safe, 1 for failure) is stored in the scoring variable and modified after

completion of each history. Scoring in this manner on a parallel processor can lead

to an erroneous score since different processors may attempt to update the score at
the same time. To resolve this, a similar strategy to that of random number

generation is employed in our code. That is, each processor has its own designated
score board (i.e., a carry-around scalar). The final total score is then the sum of the

score on each processor.

4.4 CANTILEVER BEAM EXAMPLE

Figure 4-3 illustrates this simple first example. The selected problem is to
evaluate the cumulative distribution function (CDF) of the fundamental frequency
of the cantilever beam, wherein the properties of the cantilever beam are random

variables. The fundamental frequency of the rectangular beam is given by

¢o= 3.52 _/ Et2
12p L4 (4-1)
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where E is the modulus of elasticity, p is the material density, t is the beam depth,

and L is the beam length. Each of the beam properties is assumed to be a lognormal

random variable with median and coefficient of variation given in Table 4-1.

L

E = modulus of elasticity
p= material density
t = thickness

L = length

Figure 4-3. Cantilever Beam Example

Table 4-1. Random Variables for Cantilever Beam Example

Variable

E

P
t

L

Type

lognormal

lognormal

lognormal

lognormal

Median

107 (psi)
2.5 x lO-4(lb-sec2 / in 4)

0.98 (in)

20.0 (in)

COV

0.03

0.05

O.05

0.05

The lognormal distribution is selected for this illustration since this allows

for an exact closed form evaluation of the CDF for the fundamental frequency.

When the beam properties are lognormal, the fundamental frequency is also a

lognormal random variable and the median frequency (denoted here by ^) is given

,,2

^

cO= 3.52 12 p [4
(4-2)

Also, the logarithmic standard deviation (denoted as _) of the fundamental

frequency is given by

_2¢0 (1/2)2[_2E 22 _2 _2p 42 _L]= + + + (4-3)

assuming independence among the problem variables. From the relationship

between the logarithmic standard deviation and the coefficient of variation for a

lognormal random variable, the coefficient of variation for the beam fundamental

frequency can be obtained as
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6w = 1 - e_2,_

The CDF for the beam frequency, F(w), is given by

F(W)=O( !nw---ln :_ (lnW 1G a' G/

(4-4)

(4-5)

where q_ is the standard normal CDF.

For the simulation, the CDF for the beam fundamental frequency was

evaluated by coding the frequency expression, Eq. 4-1, into the performance function

subroutine of MCPAP. On each simulation history, the frequency is evaluated and

compared with several fixed values. The number of times each fixed value is

exceeded (over all the simulation histories) is scored by MCPAP to determine the

exceedance (or non-exceedance) probability of each fixed value. Note that for each

simulation history the frequency function need only be evaluated once. This is one

advantage of the simulation approach when the performance function is complex as

in most practical problems.

For this analysis 10,000 Monte-Carlo histories were used to obtain the CDF.

This large number of histories ensures reliable results for the range of probability

levels considered. Figure 4-4 shows the results of the analysis using 1, 4, 6, and 8

processors of the Alliant FX/80. As can be seen the comparison between the exact

solution and the Monte-Carlo simulation is quite good.

Note that the results using different numbers of processors vary slightly. This

is because, as explained in the previous chapter, each processor uses an independent

stream of random numbers which is begun with a different random seed. Although

it is not possible to detect from the figure, there is no systematic trend to the results

with the number of processors. That is, the results do not systematically increase or

decrease with the number of processors. This is to be expected and is heuristic

evidence of the fidelity of the random number generation approach. The difference

in results, for different numbers of processors, becomes more evident in the tail of

the distribution which is to be expected in Monte-Carlo simulation. The results will

converge to the exact solution as the number of histories is increased.

Table 4-2 lists the speedup and efficiency obtained for 1, 4, 6, and 8 processors,

while Figure 4-5 displays these results graphically. For this problem with 10,000

histories, the fraction of the computations that cannot be performed concurrently

(a) is 1.38%. This is essentially program I/O. The theoretical speedup (i.e., speedup

assuming no concurrency overhead) is obtained from Eq. 2-7 and the actual speedup

is the observed speedup on the Alliant. It may be noted that the maximum

theoretical speedup from Eq. 2-7 (assuming an infinite number of processors) is 72.5.
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Figure 4-4. CDF for Cantilever Beam Fundamental Frequency

Speedup and Efficiency for Cantilever Beam Example (Sample Size --

10,000, 0¢= 0.0138)

N

(cPu)
1

4

6

8

Theoretical

Speedup
1.0

3.84

5.61

7.30

Actual

Speedup
1.0

3.76

5.40

6.81

Overhead

Factor

0.0

0.0056

0.0070

0.0098

Efficiency (%)

100.0

97.9

96.3

93.3

The overhead factor is obtained from Eq. 2-12 and, as defined in Chapter 2, is the

additional processor time required to support the concurrent operations, expressed

as a fraction of the time required to solve the problem on a single processor.

The results show that the efficiency is high, exceeding 93% for 8 processors.

The observed decrease in efficiency as the number of processors increases is because

the overhead increases with the number of processors as expected. Actually, since

the performance function computation for this problem is so trivial (i.e., Eq. 4-1),

there is a very small amount of computing done on each Monte-Carlo history (i.e.,

the problem granularity is fine). Thus, only a relatively small amount of time

passes before the processor completes a history and another history must be

allocated to the processor. For this reason the overhead factor may be smaller for

more complex problems. This is explored in the examples that follow. This

phenomenon affects the number of processors that can effectively be used, and

impacts decisions regarding optimal hardware configurations for PSM problems.
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4.5 FINITE ELEMENT EXAMPLES

As described earlier, a finite element code was implemented into MCPAP in

order to study speedup and efficiency for more complex problems. Two example

problems were conducted, a two-tier 2-dimensional truss and a 3-D space truss.

4.5.1 Two-Tier Truss

Figure 4-6 shows the two tier truss problem, and Tables 4-3 and 4-4 describe

the material properties. The problem random variables are the member elastic

moduli, the member cross sectional areas, the initial strain in the members and the

loadings S 1 and S e. The truss has ten members and six independent material types.

The members that have the same material type have perfectly dependent properties.

Values shown in the table are the mean properties for each material type. Note that

while the mean moduli are the same for different material types, they are

independent random variables, so that on a given Monte-Carlo history the values

will not be the same. The modulus of elasticity, cross sectional area, and loading are

modeled as lognormal random variables with the coefficients of variation (6) as

shown in Table 4-3. The initial strain random variable accounts for possible initial

deformation in members due to fabrication and construction tolerances, and is

modeled as a normal random variable with zero mean and standard deviation of

10 -4. As for the material moduli, the initial strains in members of different material

types will not be the same on a given Monte-Carlo history.
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Table 4-3. Material Property Random Variables for Two-Tier Truss Example

Material E (3=0.15) A (3=0.10) emt (o-=10 -4)

Type (ks/) . (sq. in)

M1

M2

M3

M4

M5

M6

29000.

29000.

29000.

29000.

29000.

29000.

3.3334

0.3334

1.7778

0.7778

0.5556

1.1112

.

O.

O.

O.

O.

O.

E = mean modulus of elasticity (lognormal r.v.)

A = mean bar cross-section area (lognormal r.v.)

_,int = mean initial strain in bar element (normal r.v.)

6 = coefficient of variation

o" = standard deviation

Table 4-4. Loading Random Variables for Two-Tier Truss Example

Load

$1

$2

Type mean (kips) 6

Lognormal 20.0 0.30

Lognormal 60.0 0.30

Figure 4-7 shows the results of the analysis using 1, 4, 6, and 8 processors of

the Alliant FX/80. As for the cantilever example, the results using different

numbers of processors vary only slightly, and result from each processor using an

independent stream of random numbers. Also, it is again observed that there is no

systematic trend to the results with the number of processors, as expected.
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The speedup and efficiency obtained for 1, 4, 6, and 8 processors was evaluated

as shown in Table 4-5 and Figure 4-8. For this problem 1,000 Monte-Carlo histories

were performed and the fraction of the computations that cannot be performed

concurrently (a) was evaluated to be 3.37%. Note that (x is larger here than in the

previous example, because of the lesser number of Monte-Carlo histories. If the

number of histories were increased, the fraction of the computations (measured by

execution time) that can be performed would increase and o¢ would decrease. Again,

the theoretical speedup (i.e., speedup assuming no concurrency overhead) is

obtained from Eq. 2-7 and the actual speedup is the observed speedup on the Alliant.

The overhead factor, obtained from Eq. 2-12, is also shown in Table 4-5. Note that

the overhead factors are significantly smaller, and the efficiencies higher, for this

problem as compared with the cantilever beam example. This is to be expected,

since, for this problem, the computation time for each Monte-Carlo history is much

larger (i.e., the granularity of the problem is larger). Thus, a larger amount of

computation time passes before another history must be allocated to the processor.

Table 4-5. Speedup and Efficiency for Two-Tier Truss Example (Sample Size =

1,000, o¢= 0.0337)

N Theoretical

(CPU) Speedup
, ; ,,,

1

4

6

8

1.0

3.63

5.13

6.47

Actual Overhead

Speedup Factor

1.0

3.62

5.05

6.26

Efficiency

(%)
0.0 100.0

0.0010 99.7

0.0033 98.4

0.0052 96.8
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Figure 4-8. Theoretical and Actual Speedups for Two-Tier Truss Example

4.5.2 3-D Space Truss

The next example considered is a 3-D space truss composed of 99 members

with 72 degrees of freedom. The purpose of this problem is to examine the effect on

the overhead and efficiency as the problem size increases. This has important

practical significance since the overhead factor limits the maximum speedup that is

achievable. Figure 4-9 shows the front panel and section details of the truss. The

truss is made up of three panels so that the cross section is an equilateral triangle. It

is simply supported at three points on the bottom and is capped by a pyramid at the
top. The apex of the pyramid is circumferentially constrained so that only vertical

movement is possible. Three loads are applied to the structure, a vertical load at the

apex and two horizontal loads The problem random variables are the same as for
the two-tier truss: the member elastic moduli, the member cross sectional areas, the

initial strain in the members and the loadings $1, $2, and S 3. Satistical descriptions

of the random variables are given in Tables 4-6 and 4-7.

The speedup and efficiency in computing the CDF for element stress, obtained

for 1, 4, 6, and 8 processors was evaluated as shown in Table 4-8. As for the two-tier

truss, 1,000 Monte-Carlo histories were performed and the fraction of the

computations that cannot be performed concurrently (o0 is evaluated to be 0.5%.

Note that a is much smaller here than in the two-tier truss example. This results

because the time to evaluate the performance function (i.e., solve the structure)

which is the concurrent part of the Monte-Carlo simulation, has significantly

increased. As for the earlier examples, the theoretical speedup (i.e., speedup
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Table 4-6. Material Property Random Variables for 3-D Truss

Material E (6=0.10)

Type (ksi)

Mv

Mhl

Mhll

Mhiii

Mbl

Mbil

Mbiii
Mt

29000.

29000.

29000.

29000.

29000.

29000.

29000.

29000.

A (S=0.10)

(sq. in)

1.590

1.590

1.590

1.590

0.938

0.938

0.938

1.590

_nt(G=10 -4)

.

0.

0.

0.

0.

0.

0.

0.

E = mean modulus of elasticity (lognormal r.v.)

A = mean bar cross-section area (lognormal r.v.)

eint = mean initial strain in bar element (normal r.v.)

6 = coefficient of variation

rI = standard deviation
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Table 4-7. Loading Random Variables for 3-D Truss

Load

$1

$2

$3

Type

Lognormal

Lognormal

Lognormal

mean

(kips)
10.0

10.0

500.0

5

0.25

0.25

0.25

assuming no concurrency overhead) is obtained from Eq. 2-7 and the actual speedup

is the observed speedup on the Alliant. The overhead factor, obtained from Eq. 2-12,

is also shown in the Table. Again, the efficiencies achieved are quite high.

It is interesting to note that the overhead is generally larger, and the efficiency

smaller, for this problem than the two-tier truss, although the granularity of this

problem is larger than that of the two-tier truss. One possible explanation is that

there is significantly more memory access required for solving the 3-D truss

problem. Hence, as the number of processors is increased memory contention can

become more likely. It is also important to note that, for many practical problems,

attempting to use all eight processors to solve Monte-Carlo histories concurently

will increase the memory requirements beyond the size of the physical memory.

Hence, for these problems some means of secondary storage will have to be used

(disk paging on the Alliant). This will result in a significant increase in the apparent

overhead factor and severely limit the concurrency speedup. Clearly alternative

strategies will be necessary here which are discussed further in the next Chapter.

Table 4-8. Speedup and Efficiency for 3-D Space Truss (Sample size = 1,000, a =
O.0050)

N Theoretical Actual Overhead

(CPU) Speedup Speedup Factor

1

4

6

8

1.0

3.94

5.85

7.73

1.0

3.89

5.70

7.43

0.0

0.0033

0.0046

0.0052

Efficiency

(%)

100.0

98.7

97.4

96.1
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CHAPTER 5

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 SUMMARY AND CONCLUSIONS

The objectives of this effort were to identify the special software and hardware

research and development needs for implementing probabilistic structural

mechanics problems (PSM) on parallel processing computers, and to demonstrate

the feasibility and potential advantages of such an implementation. In order to

meet these objectives three basic tasks were conducted and are reported on herein.

First, currently available parallel processing hardware was reviewed in detail

(Chapter 2) in order to be able to assess the adequacy of these architectures for PSM

problems. Second, the sources of parallelism in PSM problems were identified

(Chapter 3) to assess the required software strategies for implementation and to what

extent parallelism in PSM problems can be exploited. Third, several example

implementations were carried out (Chapter 4) in order to demonstrate the feasibility

and potential advantages of the parallel implementation. This implementation was

limited, for this Phase I effort, to two levels of parallelism in PSM, that is, the

repeated performance function evaluations of direct Monte-Carlo simulation and

vectorization in the structural mechanics computations; and one hardware

architecture, that is, a shared memory vector/concurrent multiprocessor.

While the example implementations performed herein were highly

successful, it is concluded that new hardware and software strategies will be required

to achieve massive parallel implementations for many practical problems. This is a

result of two factors - concurrency overhead and storage requirements

First, concurrency overhead must be kept extremely small to achieve

reasonable efficiency for massively parallel applications. For example, even with the

relatively small overhead factors of approximately 0.005, obtained in the examples,

the maximum speedup is limited to 200 for an infinite number of processors.

Hence, we will need to strive for parallel implementations with even smaller
overhead than this.

Second, multiple levels of parallelism need to be exploited since storage

requirements can easily exceed available memory if only one level of parallelism is

implemented. Structural mechanics problems solved by the finite element method

are memory intensive. It is not uncommon for a single problem to require memory

in excess of several million 64-bit words (1 word = 8 Bytes). When multiple

concurrent solutions are performed in a parallel PSM code, so that each processor is

assigned an independent performance function evaluation, the memory required is

multiplied by the number of processors. For example, say a 3-D analysis of a turbine

blade requires 40 MBytes of storage (assuming banded matrix storage). Then on an 8

processor computer we would require on the order of 320 Mbytes of total storage, for
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the parallel PSM implementation. This will overwhelm the physical memory

available on all but a few supercomputers and this example has used only a small

number of processors. Also, currently available distributed memory machines

support no more than 8-16 Mbytes per processor (node)3

The key conclusions of this study can be summarized as follows:

. A wide range of parallel architectures have been developed and are

currently available, however, none seem to be ideally suited for

parallel implementation of PSM.

. Minimization of concurrency overhead is crucial to effective

implementation of parallel PSM on a large scale.

° There are several levels of parallelism in PSM problems that may need

to be taken advantage of in order to fully exploit the potential of

parallel processing computers.

4, Very high efficiency (greater than 96% for 8 processors) can be achieved

for parallel Monte-Carlo PSM codes.

. Specially adapted numerical techniques will be required for efficient

parallel implementation of many practical problems in order to reduce

memory requirements and processor idling.

, Existing hardware technologies can be applied to develop a computer

architecture that is ideally suited for parallel PSM.

. Availability of parallel computers with properly adapted software show

excellent potential for practical turn around time on large scale PSM

problems.

5.2 RECOMMENDATIONS

Based on the work performed herein we can define optimal, generic

hardware and software specifications for parallel processing of PSM problems.

. Distributed memory (as opposed to shared memory) is preferable. This

is because PSM problems involve a large number of independent

calculations. Although there are communication advantages for a

shared memory system, the overhead cost associated with shared

memory is not justified for PSM problems. For a shared memory

machine, access to the shared memory can become a bottleneck,

1 This is expected to increase over the next 6-12 months by a factor of 4, when 4 megabit memory chips
become widely availabie, although at significant expense.
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particularly for the large number of processors desired for PSM

problems.

, Local memory at each distributed node should be greater than that on

currently available distributed memory computers. As was

demonstrated above, practical structural mechanics problems are

memory intensive. Since it will not be practical or economical to

provide sufficient memory at each node to solve most structures,

alternative software strategies will need to be implemented (see below).

3, Each distributed processor should be capable of performing the

numeric floating point operations required in structural mechanics

problems with high speed and would ideally have vector pipeline

capability.

o A host controller processor is required to track the simulation history

number being performed at each distributed processor. This will allow

for dynamic history allocation and unbiased results. This processor

need not be very powerful or have large memory, since each

distributed processor can handle its own random number generation,

performance function evaluation, and scoring. Communication

between this processor and the distributed processors will be limited

and infrequent, but the connection topology should be such that the

host processor is closely linked with each individual processor.

. The communication topology must be flexible enough to allow for

direct communication among small clusters of the processors. A

topology defined by clusters of low dimension hypercubes or low

dimension pyramids may satisfy this specification. This will allow

more efficient handling of large problems wherein multiple levels of

parallelism will need to be implemented.

, Controlling software must be developed to optimally allocate the

multiple levels of parallelism among the processors to minimize

processor idling and achieve maximum speedup. The task of assigning

different processors to different tasks must be handled by this software.

As a simple example, if 40 Mbytes of storage are required to solve a

structure and only 8 Mbytes are available at each processor node, 5

processors at a minimum must be assigned to solve a single structure.

Decomposition among these 5 processors must then be accomplished.

For Monte-Carlo simulation on a machine with, say 100 processors, 20

simulation histories would then be processed concurrently. Or, if a

partial derivative method is used, each cluster of 5 processors is

assigned to one partial derivative. If the number of random variables

is less than 20 the clusters could be grouped, introducing another level

5-3



of parallelism, with different groups of clusters working on different

parts of the cumulative distribution function (see Chapter 3).

. Special numerical techniques will be required that are adapted to this

architecture. These numerical techniques must minimize storage

requirements, be able to be implemented concurrently, and minimize

the computational effort in the PSM computations. Under this Phase I

effort the initial development of one possible technique was begun.

This technique, the Stochastic Pre-Conditioned Conjugate Gradient

(SPCG) method is described in Appendix A, and an example

implementation is presented. Dramatic reductions in storage and

computational effort are possible with this approach. In addition, the

method can also be implemented concurrently. Hence, it shows the

potential to satisfy the requirements of this specification.

These generic specifications form the basic recommendations for a system

that can achieve practical computational time for large scale PSM computations.

Based on our review of currently available hardware (see Chapter 2 and Table 2-2)

current architectures do not meet these specifications. However, the basic

technologies do exist. Specific, practical approaches toward meeting these

specifications are outlined in our Phase II proposal, along with a specific research

plan for developing the system.
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APPENDIX A

DEVELOPMENT OF THE STOCHASTIC

PRE-CONDITIONED CONJUGATE GRADIENT METHOD

The memory required to perform performance function evaluations

concurrently on a massively parallel processor can easily exceed the available

resources. Hence, for many practical problems it will be necessary to take advantage

of the parallelism in both the probabilistic computations and the structural

mechanics computations as identified in Chapter 3.

One approach to take advantage of the parallelism in the structural

mechanics computations discussed in Chapter 3 is the use of operator splitting

techniques. We investigated herein one type of operator splitting technique in the

form of an iterative equation solver, the Pre-Conditioned Conjugate Gradient (PCG)

Method. There were several motivating factors for this investigation:

. The method is easily implemented in parallel since all computations

are essentially matrix and vector multiplications.

. It requires minimal storage since "fills" do not occur during solution

and sparse storage methods are effective for large problems.

. The method can take advantage of "knowledge" gained from the

"mean-value" solution obtained at the beginning of the simulation.

4. Computational effort can be reduced by reducing required precision.

These four factors make the PCG method a promising candidate as the

equation solver in a parallel Monte-Carlo simulation code. Not only is it

straightforward to take advantage of concurrency and vectorization on parallel

computers, but storage requirements are also reduced from direct solvers. In fact,

Poole [1990] demonstrated reductions in storage requirements ranging from factors

of 4 to greater than 10 for general practical problems. As was presented in Chapter 5,

storage requirements will be a key factor in achieving massively parallel

implementations of PSM. In addition, as will be shown below, the computational

effort for each simulation history can be minimized through the use of the reduced

preconditioning matrix that is available in Monte-Carlo simulation at essentially no

extra cost, and by taking advantage of the reduced precision that may be possible in
Monte-Carlo simulation.

The PCG method, which is obtained by combining a suitable preconditioning

matrix with the basic Conjugate Gradient Method [Hestenes and Stiefel, 1952], has

been shown to be a very powerful approach for solving large systems of equations
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[Poole, E., 1989;Nour-Omid, 1984]. In the PCG method the standard linear structural
analysis problem:

Kx = f (A-l)

where K is the stiffness matr!x, f is the loading vector, and x the structure unknown

displacements, is modified by pre-multiplying both sides of the equation by a

preconditioning matrix, M, to obtain:

M q Kx = M -1 f (A-2)

The preconditioning matrix, M, is a symmetric positive definite matrix and is

chosen to approximate K. The PCG algorithm to solve this system of equations then

proceeds by first selecting an initial solution guess, xo and computing

ro =f-Kx o

ho = Po = M-1 ro

The following steps are then repeated until convergence is achieved.

°

.

ri • hi

Kpi " Pi

xi+l =xi+ _/Pi

ri+l = ri- oqKpi

3. hi+l = Mq ri+l

4. ///ri+l • hi+l
ri • hi

5. pi+l =hi+l +_pi

The convergence criteria can be taken as

ri+ 1 • hi+ 1
<7/

ro • ho

where 7/is the convergence tolerance.

The preconditioning serves to improve the rate of convergence but at the cost

of the additional computations required in step 3. A considerable amount of
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research has been conducted in recent years to develop approaches for obtaining
optimal preconditioning. That is, preconditioning wherein the minimum
computational effort is required by achieving maximal rate of convergence with
minimal extra computational effort in Step 3. The closer the preconditioning
matrix approximates the stiffness matrix, the faster the rate of convergence, but the
greater the additional computational expense (this derives from the obvious fact
that for M = K, convergence is in one step).

For PSM problems, a candidate preconditioning matrix is clearly the mean
stiffness matrix. The mean stiffness matrix will be a good approximation to the
stiffness matrix of any particular simulation history and it need only be solved once
(i.e., inverted or cholesky factored) prior to the commencement of the simulation
loop. In addition, the solution obtained using the mean stiffness matrix and mean
load vector can be used as the initial guess.

We can, therefore, define the Stochastic Preconditioned Conjugate Gradient
method (SPCG) as follows:

. Select the preconditioning matrix to be the mean stiffness matrix, that

is, M = K, and;

2. Select the initial guess to be:

xo = _-1 f

In order to investigate this approach, the SPCG solver was implemented in MCPAP

and applied to the 3-D Space Truss problem presented in the Chapter 4. Table A-1

shows the results of this analysis.

Table A-1. Stochastic Preconditioned Conjugate Gradient Method (SPCG) Applied

to 3-D Space Truss Problem*

Pre-

Conditioning

Matrix

KD

K

K

Initial

Solution

Guess

K q f

Tolerance

7/

Number of Iterations

0.01

Standard

Mean Deviation

42 6.0

Solution

Time

(sec)

638

0.01

0.10

4.2 0.48

3.2 0.41

101

86

Comments

Tenfold reduction in no.

iter, 60% increase in time

per iteration.
Accurate to 3 decimals for

CDF values [0.01, 0.999].

* See Figure 4-9, Table 4-6, Table 4-7 (Truss has 99 Members and 72 Degrees of Freedom, 1000
Monte-Carlo simulations were used).
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As shown in the table three example analyses were conducted. For each

example, 1000 Monte-Carlo simulation histories were performed, and the number

of iterations required to achieve a converged solution for each history was retained.
The table shows the mean and standard deviation of the number of iterations for

each example, along with the total solution time.

Dramatic improvement in the mean number of iterations for convergence

can be seen with the SPCG method. In the first example a simple and common

preconditioning strategy, often referred to as Jacobi preconditioning was used. Here

the preconditioning matrix is selected to be the main diagonal of the stiffness matrix

(that is, of the stiffness matrix formed within the particular simulation trial). As

shown in the table this method required, on average, 42 iterations to achieve a

converged solution. Next the SPCG method was used. The preconditioning matrix

was selected to be the mean stiffness matrix and the initial guess obtained as

described above and as shown in the table. The mean number of iterations required

to achieve a converged solution reduced by an order of magnitude to 4.2. The

solution time is, however, reduced by a smaller factor of 6.3 due to the additional

computational effort required by the SPCG method. Note that the reduction in

number of iterations can be attributed to the preconditioning since the initial guess
is identical in both cases.

The effect of reducing the convergence criteria was next investigated. The

purpose here was to see if the number of iterations could be further reduced without

significantly affecting the accuracy of the Monte-Carlo results. The tolerance was

reduced by an order of magnitude from 0.01 to 0.1 and as shown in the table, the

mean number of iterations reduced by another 25%. This reduction in tolerance

had no appreciable affect on the Monte-Carlo results. For the cumulative

distribution function values calculated for the example, which range from 0.01 to

0.999 (see Section 4.5), there was no change in results for three decimal places. The

significance of these results is that it may be possible to reduce the tolerance required

in Monte-Carlo simulation from that which is normally required in a deterministic
evaluation.

Further work will be needed to determine what convergence criteria should

be used in Monte-Carlo simulation. In fact, for Monte-Carlo a "smart" convergence

criteria should be developed that reflects the basic problem uncertainties. Clearly, a

high degree of precision should not be required when the problem uncertainties are

very large. This can be formalized as follows:
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Let Y = Random Response Variable

Then Y = Y +

Where ¢ = Numerical Error
__ A

And Y = Y +

From the above it is seen that the convergence criteria should be adjusted so

that _/Y and o-Jo_ are acceptable. That is, since the Monte-Carlo simulation results

are an average over a large number of trials, the numerical solution procedure

should be adjusted so that the mean and standard deviation of the numerical error

do not significantly affect the Monte-Carlo results, that is the mean and standard

deviation of the random response variable Y (where Y may actually represent the

response probability).
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